Search results for "physics.data-an"
showing 10 items of 69 documents
Do firms share the same functional form of their growth rate distribution? A statistical test
2014
We introduce a new statistical test of the hypothesis that a balanced panel of firms have the same growth rate distribution or, more generally, that they share the same functional form of growth rate distribution. We applied the test to European Union and US publicly quoted manufacturing firms data, considering functional forms belonging to the Subbotin family of distributions. While our hypotheses are rejected for the vast majority of sets at the sector level, we cannot rejected them at the subsector level, indicating that homogenous panels of firms could be described by a common functional form of growth rate distribution.
Core of communities in bipartite networks
2017
We use the information present in a bipartite network to detect cores of communities of each set of the bipartite system. Cores of communities are found by investigating statistically validated projected networks obtained using information present in the bipartite network. Cores of communities are highly informative and robust with respect to the presence of errors or missing entries in the bipartite network. We assess the statistical robustness of cores by investigating an artificial benchmark network, the co-authorship network, and the actor-movie network. The accuracy and precision of the partition obtained with respect to the reference partition are measured in terms of the adjusted Ran…
Selectivity in Probabilistic Causality: Drawing Arrows from Inputs to Stochastic Outputs
2011
Given a set of several inputs into a system (e.g., independent variables characterizing stimuli) and a set of several stochastically non-independent outputs (e.g., random variables describing different aspects of responses), how can one determine, for each of the outputs, which of the inputs it is influenced by? The problem has applications ranging from modeling pairwise comparisons to reconstructing mental processing architectures to conjoint testing. A necessary and sufficient condition for a given pattern of selective influences is provided by the Joint Distribution Criterion, according to which the problem of "what influences what" is equivalent to that of the existence of a joint distr…
Retrieval of Case 2 Water Quality Parameters with Machine Learning
2018
Water quality parameters are derived applying several machine learning regression methods on the Case2eXtreme dataset (C2X). The used data are based on Hydrolight in-water radiative transfer simulations at Sentinel-3 OLCI wavebands, and the application is done exclusively for absorbing waters with high concentrations of coloured dissolved organic matter (CDOM). The regression approaches are: regularized linear, random forest, Kernel ridge, Gaussian process and support vector regressors. The validation is made with and an independent simulation dataset. A comparison with the OLCI Neural Network Swarm (ONSS) is made as well. The best approached is applied to a sample scene and compared with t…
Gap Filling of Biophysical Parameter Time Series with Multi-Output Gaussian Processes
2018
In this work we evaluate multi-output (MO) Gaussian Process (GP) models based on the linear model of coregionalization (LMC) for estimation of biophysical parameter variables under a gap filling setup. In particular, we focus on LAI and fAPAR over rice areas. We show how this problem cannot be solved with standard single-output (SO) GP models, and how the proposed MO-GP models are able to successfully predict these variables even in high missing data regimes, by implicitly performing an across-domain information transfer.
Machine learning-based spin structure detection
2023
One of the most important magnetic spin structure is the topologically stabilised skyrmion quasi-particle. Its interesting physical properties make them candidates for memory and efficient neuromorphic computation schemes. For the device operation, detection of the position, shape, and size of skyrmions is required and magnetic imaging is typically employed. A frequently used technique is magneto-optical Kerr microscopy where depending on the samples material composition, temperature, material growing procedures, etc., the measurements suffer from noise, low-contrast, intensity gradients, or other optical artifacts. Conventional image analysis packages require manual treatment, and a more a…
Deep neural networks to recover unknown physical parameters from oscillating time series.
2022
PLOS ONE 17(5), e0268439 (2022). doi:10.1371/journal.pone.0268439
Multiscale analysis of information dynamics for linear multivariate processes.
2016
In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving aver…
Gradients of O-information: Low-order descriptors of high-order dependencies
2023
O-information is an information-theoretic metric that captures the overall balance between redundant and synergistic information shared by groups of three or more variables. To complement the global assessment provided by this metric, here we propose the gradients of the O-information as low-order descriptors that can characterise how high-order effects are localised across a system of interest. We illustrate the capabilities of the proposed framework by revealing the role of specific spins in Ising models with frustration, and on practical data analysis on US macroeconomic data. Our theoretical and empirical analyses demonstrate the potential of these gradients to highlight the contributio…
Simulation-based marginal likelihood for cluster strong lensing cosmology
2015
Comparisons between observed and predicted strong lensing properties of galaxy clusters have been routinely used to claim either tension or consistency with $\Lambda$CDM cosmology. However, standard approaches to such cosmological tests are unable to quantify the preference for one cosmology over another. We advocate approximating the relevant Bayes factor using a marginal likelihood that is based on the following summary statistic: the posterior probability distribution function for the parameters of the scaling relation between Einstein radii and cluster mass, $\alpha$ and $\beta$. We demonstrate, for the first time, a method of estimating the marginal likelihood using the X-ray selected …