Search results for "physics.flu-dyn"

showing 10 items of 64 documents

Dynamic mode decomposition of magnetohydrodynamic bubble chain flow in a rectangular vessel

2021

We demonstrate the first application of dynamic mode decomposition (DMD) to bubble flow with resolved dynamic liquid/gas boundaries. Specifically, we have applied DMD to the output of numerical simulations for a system where chains of bubbles ascend through a rectangular liquid metal vessel. Flow patterns have been investigated in the vessel and bubble reference frames. We show how gas flow rate and applied magnetic affect bubble wake flow and larger-scale flow structures within the liquid metal vessel by examining the velocity field mode statistics over trajectory time and total flow time as well as the computed mode velocity fields. The results of this proof-of-concept study indicate that…

Fluid Flow and Transfer ProcessesPhysicsLiquid metalMechanical EngineeringBubbleComputational MechanicsFluid Dynamics (physics.flu-dyn)FOS: Physical sciencesMechanicsPhysics - Fluid DynamicsWakeCondensed Matter PhysicsVolumetric flow ratePhysics::Fluid DynamicsFlow (mathematics)Mechanics of MaterialsDynamic mode decompositionVector fieldMagnetohydrodynamic drive
researchProduct

Extended fractional-order Jeffreys model of viscoelastic hydraulic cylinder

2020

A novel modeling approach for viscoelastic hydraulic cylinders, with negligible inertial forces, is proposed, based on the extended fractional-order Jeffreys model. Analysis and physical reasoning for the parameter constraints and order of the fractional derivatives are provided. Comparison between the measured and computed frequency response functions and time domain transient response argues in favor of the proposed four-parameter fractional-order model.

Frequency responseMechanical EngineeringMathematical analysisFluid Dynamics (physics.flu-dyn)FOS: Physical sciencesPhysics - Fluid DynamicsSystems and Control (eess.SY)Electrical Engineering and Systems Science - Systems and ControlViscoelasticityComputer Science ApplicationsFractional calculusPhysics::Fluid DynamicsShock absorberHydraulic cylinderControl and Systems EngineeringFictitious forceFOS: Electrical engineering electronic engineering information engineeringTime domainTransient responseInstrumentationInformation SystemsMathematics
researchProduct

Smoothed particles hydrodynamics numerical simulations of droplets walking on viscous vibrating liquid

2016

We study the phenomenon of the "walking droplet", by means of numerical fluid dynamics simulations using the Smoothed Particle Hydrodynamics numerical method. This phenomenon occurs when a millimetric drop is released on the surface of an oil of the same composition, contained in a tank and subjected to vertical oscillations of frequency and amplitude very close to the Faraday instability threshold. At appropriate values of the parameters of the system under study, the oil droplet jumps permanently on the surface of the vibrating liquid forming a localized wave-particle system, reminding the behaviour of a wave particle quantum system as suggested by de Broglie. In our study, we made releva…

General Computer ScienceFaraday waveFOS: Physical sciences01 natural sciencesInstability010305 fluids & plasmasQuantum analogous phenomenaPhysics::Fluid DynamicsSmoothed-particle hydrodynamicsFaraday wavesymbols.namesake0103 physical sciencesFluid dynamicsQuantum system010306 general physicsPhysicsFluid dynamics numerical simulationDrop (liquid)Fluid Dynamics (physics.flu-dyn)General EngineeringPhysics - Fluid DynamicsMechanicsAmplitudesymbolsWalking dropletMatter waveComputers & Fluids
researchProduct

Cross-stream migration of a Brownian droplet in a polymer solution under Poiseuille flow

2018

The migration of a Brownian fluid droplet in a parallel-plate microchannel was investigated using dissipative particle dynamics computer simulations. In a Newtonian solvent, the droplet migrated toward the channel walls due to inertial effects at the studied flow conditions, in agreement with theoretical predictions and recent simulations. However, the droplet focused onto the channel centerline when polymer chains were added to the solvent. Focusing was typically enhanced for longer polymers and higher polymer concentrations with a nontrivial flow-rate dependence due to droplet and polymer deformability. Brownian motion caused the droplet position to fluctuate with a distribution that prim…

Materials scienceFOS: Physical sciences02 engineering and technologyCondensed Matter - Soft Condensed Matter010402 general chemistry01 natural sciencesPhysics::Fluid DynamicsNewtonian fluidPhysics::Atomic and Molecular ClustersBrownian motionchemistry.chemical_classificationMicrochannelDissipative particle dynamicsFluid Dynamics (physics.flu-dyn)General ChemistryPolymerMechanicsPhysics - Fluid Dynamics021001 nanoscience & nanotechnologyCondensed Matter PhysicsHagen–Poiseuille equation0104 chemical sciencesShear rateLift (force)Condensed Matter::Soft Condensed MatterchemistrySoft Condensed Matter (cond-mat.soft)0210 nano-technology
researchProduct

Deformation of flexible ferromagnetic filaments under a rotating magnetic field

2019

Research on magnetic particles dispersed in a fluid medium, actuated by a rotating magnetic field, is becoming increasingly active for both lab-on-chip and bio-sensing applications. In this study, we experimentally investigate the behaviour of ferromagnetic filaments in a rotating field. Filaments are synthesized by linking micron-sized ferromagnetic particles with DNA strands. The experiments were conducted under different magnetic field strengths, frequencies and filament sizes, and deformation of the filaments was registered via microscope and camera. The results obtained showed that the body deformation is larger for longer filaments and higher frequencies and lower for larger magnetic …

Materials scienceField (physics)FOS: Physical sciencesmacromolecular substances02 engineering and technologyCondensed Matter - Soft Condensed MatterDeformation (meteorology)01 natural sciencesQuantitative Biology::Subcellular ProcessesProtein filament0103 physical sciences010302 applied physicsRotating magnetic fieldMagnetic momentCondensed matter physicsFluid Dynamics (physics.flu-dyn)Physics - Fluid Dynamicsequipment and supplies021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsMagnetic fieldFerromagnetismSoft Condensed Matter (cond-mat.soft)Magnetic nanoparticles0210 nano-technologyhuman activitiesJournal of Magnetism and Magnetic Materials
researchProduct

Anisotropic flow in striped superhydrophobic channels

2012

We report results of dissipative particle dynamics simulations and develop a semi-analytical theory of an anisotropic flow in a parallel-plate channel with two superhydrophobic striped walls. Our approach is valid for any local slip at the gas sectors and an arbitrary distance between the plates, ranging from a thick to a thin channel. It allows us to optimize area fractions, slip lengths, channel thickness and texture orientation to maximize a transverse flow. Our results may be useful for extracting effective slip tensors from global measurements, such as the permeability of a channel, in experiments or simulations, and may also find applications in passive microfluidic mixing.

Materials scienceMicrofluidicsDissipative particle dynamicsFluid Dynamics (physics.flu-dyn)General Physics and AstronomyFOS: Physical sciencesRangingMechanicsSlip (materials science)Physics - Fluid DynamicsCondensed Matter - Soft Condensed MatterOpen-channel flowPhysics::Fluid DynamicsTransverse planeSoft Condensed Matter (cond-mat.soft)WettingPhysical and Theoretical ChemistryCommunication channel
researchProduct

Lattice Boltzmann simulations in microfluidics: probing the no-slip boundary condition in hydrophobic, rough, and surface nanobubble laden microchann…

2009

In this contribution we review recent efforts on investigations of the effect of (apparent) boundary slip by utilizing lattice Boltzmann simulations. We demonstrate the applicability of the method to treat fundamental questions in microfluidics by investigating fluid flow in hydrophobic and rough microchannels as well as over surfaces covered by nano- or microscale gas bubbles.

Materials scienceMicrofluidicsLattice Boltzmann methodsFluid Dynamics (physics.flu-dyn)FOS: Physical sciencesSlip (materials science)MechanicsPhysics - Fluid DynamicsCondensed Matter - Soft Condensed MatterCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsPhysics::Fluid DynamicsNano-Fluid dynamicsNo-slip conditionMaterials ChemistrySoft Condensed Matter (cond-mat.soft)Microscale chemistryMicrofluidics and Nanofluidics
researchProduct

Effective slippage on superhydrophobic trapezoidal grooves

2013

We study the effective slippage on superhydrophobic grooves with trapezoidal cross-sections of various geometries (including the limiting cases of triangles and rectangular stripes), by using two complementary approaches. First, dissipative particle dynamics (DPD) simulations of a flow past such surfaces have been performed to validate an expression [E.S.Asmolov and O.I.Vinogradova, J. Fluid Mech. \textbf{706}, 108 (2012)] that relates the eigenvalues of the effective slip-length tensor for one-dimensional textures. Second, we propose theoretical estimates for the effective slip length and calculate it numerically by solving the Stokes equation based on a collocation method. The comparison …

Materials scienceNumerical analysisDissipative particle dynamicsFluid Dynamics (physics.flu-dyn)Lattice Boltzmann methodsFOS: Physical sciencesGeneral Physics and AstronomyPhysics - Fluid DynamicsSlip (materials science)Surface finishMechanicsStokes flowPhysics::Fluid DynamicsCollocation methodSlippagePhysical and Theoretical ChemistryThe Journal of Chemical Physics
researchProduct

Variational principles for fluid dynamics on rough paths

2022

In this paper, we introduce a new framework for parametrization schemes (PS) in GFD. Using the theory of controlled rough paths, we derive a class of rough geophysical fluid dynamics (RGFD) models as critical points of rough action functionals. These RGFD models characterize Lagrangian trajectories in fluid dynamics as geometric rough paths (GRP) on the manifold of diffeomorphic maps. Three constrained variational approaches are formulated for the derivation of these models. The first is the Clebsch formulation, in which the constraints are imposed as rough advection laws. The second is the Hamilton-Pontryagin formulation, in which the constraints are imposed as right-invariant rough vector…

Mathematics - Analysis of PDEsGeneral MathematicsProbability (math.PR)Fluid Dynamics (physics.flu-dyn)FOS: MathematicsFOS: Physical sciencesVDP::Matematikk og Naturvitenskap: 400Dynamical Systems (math.DS)Physics - Fluid DynamicsMathematics - Dynamical SystemsMathematics - ProbabilityAnalysis of PDEs (math.AP)
researchProduct

Evidence of thin-film precursors formation in hydrokinetic and atomistic simulations of nano-channel capillary filling

2008

We present hydrokinetic Lattice Boltzmann and Molecular Dynamics simulations of capillary filling of high-wetting fluids in nano-channels, which provide clear evidence of the formation of thin precursor films, moving ahead of the main capillary front. The dynamics of the precursor films is found to obey the Lucas-Washburn law as the main capillary front, z2(t) proportional to t, although with a larger prefactor, which we find to take the same value for both geometries under inspection. Both hydrokinetic and Molecular Dynamics approaches indicate a precursor film thickness of the order of one tenth of the capillary diameter. The quantitative agreement between the hydrokinetic and atomistic m…

Mesoscopic physicsMaterials scienceCapillary actionLattice Boltzmann methodsFluid Dynamics (physics.flu-dyn)General Physics and AstronomyFOS: Physical sciencesPhysics - Fluid DynamicsCapillary fillingPhysics::Fluid DynamicsMolecular dynamicsChemical physicsNano-WettingThin film
researchProduct