Search results for "physics.flu-dyn"

showing 10 items of 64 documents

An efficient dissipative particle dynamics-based algorithm for simulating electrolyte solutions

2015

We propose an efficient simulation algorithm based on the dissipative particle dynamics (DPD) method for studying electrohydrodynamic phenomena in electrolyte fluids. The fluid flow is mimicked with DPD particles while the evolution of the concentration of the ionic species is described using Brownian pseudo particles. The method is designed especially for systems with high salt concentrations, as explicit treatment of the salt ions becomes computationally expensive. For illustration, we apply the method to electro-osmotic flow over patterned, superhydrophobic surfaces. The results are in good agreement with recent theoretical predictions.

Models MolecularOsmosisMaterials scienceSurface PropertiesGeneral Physics and AstronomyIonic bondingFOS: Physical sciencesElectrolyteCondensed Matter - Soft Condensed MatterIonPhysics::Fluid DynamicsElectrolytesFluid dynamicsPhysical and Theoretical ChemistryBrownian motionDissipative particle dynamicsFluid Dynamics (physics.flu-dyn)MechanicsPhysics - Fluid DynamicsComputational Physics (physics.comp-ph)SolutionsCondensed Matter::Soft Condensed MatterFlow (mathematics)HydrodynamicsSoft Condensed Matter (cond-mat.soft)SaltsElectrohydrodynamicsPhysics - Computational PhysicsHydrophobic and Hydrophilic InteractionsAlgorithms
researchProduct

Capillary Rise in Nanopores: Molecular Dynamics Evidence for the Lucas-Washburn Equation

2007

When a capillary is inserted into a liquid, the liquid will rapidly flow into it. This phenomenon, well studied and understood on the macroscale, is investigated by Molecular Dynamics simulations for coarse-grained models of nanotubes. Both a simple Lennard-Jones fluid and a model for a polymer melt are considered. In both cases after a transient period (of a few nanoseconds) the meniscus rises according to a $\sqrt{\textrm{time}}$-law. For the polymer melt, however, we find that the capillary flow exhibits a slip length $\delta$, comparable in size with the nanotube radius $R$. We show that a consistent description of the imbibition process in nanotubes is only possible upon modification o…

NanotubeMaterials scienceCapillary actionFluid Dynamics (physics.flu-dyn)General Physics and AstronomyFOS: Physical sciencesSlip (materials science)MechanicsPhysics - Fluid DynamicsComputational Physics (physics.comp-ph)Condensed Matter::Soft Condensed MatterPhysics::Fluid DynamicsMolecular dynamicsNanoporeClassical mechanicsWashburn's equationImbibitionVector fieldPhysics - Computational Physics
researchProduct

Multicomponent relativistic dissipative fluid dynamics from the Boltzmann equation

2022

We derive multicomponent relativistic second-order dissipative fluid dynamics from the Boltzmann equations for a reactive mixture of $N_{\text{spec}}$ particle species with $N_q$ intrinsic quantum numbers (e.g. electric charge, baryon number, and strangeness) using the method of moments. We obtain the continuity equations for multiple conserved charges as well as the conservation equations for the total energy and momentum in the single-fluid approximation. These $4+N_q$ conservation laws are closed by deriving the second-order equations of motion for the dissipative quantities in the $(10+4N_q)$-moment approximation. The resulting fluid-dynamical equations are formally similar to those of …

Nuclear Theory (nucl-th)mallintaminenHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Nuclear TheoryFluid Dynamics (physics.flu-dyn)fluiditFOS: Physical sciencesPhysics - Fluid Dynamicshiukkasfysiikkavahva vuorovaikutus
researchProduct

Resistive dissipative magnetohydrodynamics from the Boltzmann-Vlasov equation

2019

We derive the equations of motion of relativistic, resistive, second-order dissipative magnetohydrodynamics from the Boltzmann-Vlasov equation using the method of moments. We thus extend our previous work [Phys. Rev. D 98, 076009 (2018)], where we only considered the non-resistive limit, to the case of finite electric conductivity. This requires keeping terms proportional to the electric field $E^\mu$ in the equations of motions and leads to new transport coefficients due to the coupling of the electric field to dissipative quantities. We also show that the Navier-Stokes limit of the charge-diffusion current corresponds to Ohm's law, while the coefficients of electrical conductivity and cha…

Nuclear TheoryFOS: Physical sciencesfluid dynamicsplasmafysiikka01 natural sciences114 Physical sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)Electric field0103 physical sciencesTHERMODYNAMICS010306 general physicsPhysicsta114010308 nuclear & particles physicsplasma physicsVlasov equationFluid Dynamics (physics.flu-dyn)Equations of motionCharge (physics)Physics - Fluid DynamicsDissipationBoltzmann equationPhysics - Plasma PhysicsPlasma Physics (physics.plasm-ph)High Energy Physics - PhenomenologyQuantum electrodynamicsDissipative systemMagnetohydrodynamicsmagnetohydrodynamics
researchProduct

Nonresistive dissipative magnetohydrodynamics from the Boltzmann equation in the 14-moment approximation

2018

We derive the equations of motion of relativistic, non-resistive, second-order dissipative magnetohydrodynamics from the Boltzmann equation using the method of moments. We assume the fluid to be composed of a single type of point-like particles with vanishing dipole moment or spin, so that the fluid has vanishing magnetization and polarization. In a first approximation, we assume the fluid to be non-resistive, which allows to express the electric field in terms of the magnetic field. We derive equations of motion for the irreducible moments of the deviation of the single-particle distribution function from local thermodynamical equilibrium. We analyze the Navier-Stokes limit of these equati…

Nuclear TheoryTRANSIENT RELATIVISTIC THERMODYNAMICSFOS: Physical scienceshiukkasfysiikkaHEAVY-ION COLLISIONSmagneettikentätSystem of linear equations114 Physical sciences01 natural sciencesMAGNETIC-FIELDSBoltzmann equationNuclear Theory (nucl-th)HYDRODYNAMICSHigh Energy Physics - Phenomenology (hep-ph)FLUIDS0103 physical sciences010306 general physicsKINETIC-THEORYnestefysiikkaPhysicsta114010308 nuclear & particles physicsFluid Dynamics (physics.flu-dyn)Equations of motionPhysics - Fluid DynamicsBoltzmann equationMagnetic fieldnonresistivenessHigh Energy Physics - PhenomenologyDipoleDistribution functionClassical mechanicsDissipative systemMagnetohydrodynamicsmagnetohydrodynamicsPhysical Review D
researchProduct

Shallow water rogue wavetrains in nonlinear optical fibers

2013

International audience; In addition to deep-water rogue waves which develop from the modulation instability of an optical CW, wave propagation in optical fibers may also produce shallow water rogue waves. These extreme wave events are generated in the modulationally stable normal dispersion regime. A suitable phase or frequency modulation of a CW laser leads to chirp-free and flat-top pulses or flaticons which exhibit a stable self-similar evolution. Upon collision, flaticons at different carrier frequencies, which may also occur in wavelength division multiplexed transmission systems, merge into a single, high-intensity, temporally and spatially localized rogue pulse.

Optical fiberNonlinear opticsWave propagationGeneral Physics and AstronomyFOS: Physical sciencesPhysics::Optics02 engineering and technologyPattern Formation and Solitons (nlin.PS)Fluid Mechanics01 natural sciencesInstabilitylaw.invention020210 optoelectronics & photonicsOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringRogue waveFluid mechanics; nonlinear optics; optical fibers010306 general physicsPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryRogue wavesOptical fibersFluid Dynamics (physics.flu-dyn)Physics - Fluid DynamicsNonlinear Sciences - Pattern Formation and SolitonsWaves and shallow waterWavelengthPhase modulationbusinessPhase modulationFrequency modulationPhysics - OpticsOptics (physics.optics)
researchProduct

On numerical broadening of particle size spectra: a condensational growth study using PyMPDATA

2020

This work discusses the numerical aspects of representing the diffusional (condensational) growth in particulate systems such as atmospheric clouds. It focuses on the Eulerian modeling approach, in which the evolution of the particle size spectrum is carried out using a fixed-bin discretization associated with inherent numerical diffusion. Focus is on the applications of MPDATA numerical schemes (variants explored include: infinite-gauge, non-oscillatory, third-order-terms and recursive antidiffusive correction). Methodology for handling coordinate transformations associated with both particle size distribution variable choice and numerical grid layout are expounded. Analysis of the perform…

Physics - Atmospheric and Oceanic PhysicsAtmospheric and Oceanic Physics (physics.ao-ph)Fluid Dynamics (physics.flu-dyn)FOS: Physical sciencesPhysics - Fluid DynamicsComputational Physics (physics.comp-ph)Physics - Computational Physics
researchProduct

Experimental observations of topologically guided water waves within non-hexagonal structures

2020

International audience; We investigate symmetry-protected topological water waves within a strategically engineered square lattice system. Thus far, symmetry protected topological modes in hexagonal systems have primarily been studied in electromagnetism and acoustics, i.e., dispersionless media. Herein, we show experimentally how crucial geometrical properties of square structures allow for topological transport that is ordinarily forbidden within conventional hexagonal structures. We perform numerical simulations that take into account the inherent dispersion within water waves and devise a topological insulator that supports symmetry-protected transport along the domain walls. Our measur…

Physics and Astronomy (miscellaneous)Structure (category theory)FOS: Physical sciences02 engineering and technology01 natural sciences09 EngineeringSquare (algebra)[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph][SPI.MAT]Engineering Sciences [physics]/MaterialsElectromagnetism10 Technologycond-mat.mes-hallMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsDispersion (water waves)ComputingMilieux_MISCELLANEOUSApplied Physics010302 applied physicsPhysics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]02 Physical SciencesCondensed Matter - Mesoscale and Nanoscale PhysicsFluid Dynamics (physics.flu-dyn)Physics - Fluid Dynamics021001 nanoscience & nanotechnologySquare latticeComputational physicsphysics.flu-dynTopological insulatorDomain (ring theory)0210 nano-technologyEnergy (signal processing)
researchProduct

Edge pinch instability of liquid metal sheet in a transverse high-frequency AC magnetic field

2006

We analyze the linear stability of the edge of a thin liquid metal layer subject to a transverse high-frequency AC magnetic field. The layer is treated as a perfectly conducting liquid sheet that allows us to solve the problem analytically for both a semi-infinite geometry with a straight edge and a thin disk of finite radius. It is shown that the long-wave perturbations of a straight edge are monotonically unstable when the wave number exceeds some critical value $k_c,$ which is determined by the surface tension and the linear density of the electromagnetic force acting on the edge. The higher the density of electromagnetic force, the shorter the critical wavelength. The perturbations with…

PhysicsCondensed matter physicsFluid Dynamics (physics.flu-dyn)FOS: Physical sciences[CHIM.MATE]Chemical Sciences/Material chemistryPhysics - Fluid DynamicsCritical value01 natural sciencesInstability010305 fluids & plasmasMagnetic fieldWavelengthAmplitudeThin disk0103 physical sciencesPinch[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering010306 general physicsLinear stability
researchProduct

Energy oscillations and a possible route to chaos in a modified Riga dynamo

2010

Starting from the present version of the Riga dynamo experiment with its rotating magnetic eigenfield dominated by a single frequency we ask for those modifications of this set-up that would allow for a non-trivial magnetic field behaviour in the saturation regime. Assuming an increased ratio of azimuthal to axial flow velocity, we obtain energy oscillations with a frequency below the eigenfrequency of the magnetic field. These new oscillations are identified as magneto-inertial waves that result from a slight imbalance of Lorentz and inertial forces. Increasing the azimuthal velocity further, or increasing the total magnetic Reynolds number, we find transitions to a chaotic behaviour of th…

PhysicsEarth and Planetary Astrophysics (astro-ph.EP)Lorentz transformationChaoticFluid Dynamics (physics.flu-dyn)Magnetic Reynolds numberFOS: Physical sciencesAstronomy and AstrophysicsPhysics - Fluid DynamicsPhysics - Plasma PhysicsMagnetic fieldGeophysics (physics.geo-ph)Plasma Physics (physics.plasm-ph)Physics::Fluid DynamicsPhysics - Geophysicssymbols.namesakeAxial compressorSpace and Planetary ScienceQuantum electrodynamicsFictitious forcesymbolsSaturation (magnetic)DynamoAstrophysics - Earth and Planetary Astrophysics
researchProduct