Search results for "pi-structure"

showing 2 items of 2 documents

A reduction theorem for a conjecture on products of two π -decomposable groups

2013

[EN] For a set of primes pi, a group X is said to be pi-decomposable if X = X-pi x X-pi' is the direct product of a pi-subgroup X-pi and a pi'-subgroup X-pi', where pi' is the complementary of pi in the set of all prime numbers. The main result of this paper is a reduction theorem for the following conjecture: "Let pi be a set of odd primes. If the finite group G = AB is a product of two pi-decomposable subgroups A = A(pi) x A(pi') and B = B-pi x B-pi', then A(pi)B(pi) = B(pi)A(pi) and this is a Hall pi-subgroup of G." We establish that a minimal counterexample to this conjecture is an almost simple group. The conjecture is then achieved in a forthcoming paper. (C) 2013 Elsevier Inc. All ri…

Discrete mathematicsFinite groupConjectureAlgebra and Number TheoryGroup (mathematics)Prime numberProducts of subgroupsFinite groupsHall subgroupsCombinatoricsLocally finite groupSimple grouppi-structureMATEMATICA APLICADAMinimal counterexampleDirect productpi-decomposable groupsMathematicsJournal of Algebra
researchProduct

FINITE TRIFACTORISED GROUPS AND -DECOMPOSABILITY

2018

We derive some structural properties of a trifactorised finite group $G=AB=AC=BC$, where $A$, $B$, and $C$ are subgroups of $G$, provided that $A=A_{\unicode[STIX]{x1D70B}}\times A_{\unicode[STIX]{x1D70B}^{\prime }}$ and $B=B_{\unicode[STIX]{x1D70B}}\times B_{\unicode[STIX]{x1D70B}^{\prime }}$ are $\unicode[STIX]{x1D70B}$-decomposable groups, for a set of primes $\unicode[STIX]{x1D70B}$.

Finite groupPure mathematicsGeneral Mathematics010102 general mathematicsStructure (category theory)Products of subgroupsFinite groups01 natural sciences010101 applied mathematicsSet (abstract data type)IUMPApi-structure0101 mathematicsMATEMATICA APLICADApi-decomposable groupsMathematicsBulletin of the Australian Mathematical Society
researchProduct