6533b837fe1ef96bd12a2016
RESEARCH PRODUCT
A reduction theorem for a conjecture on products of two π -decomposable groups
A. Martínez-pastorMaría Dolores Pérez-ramosLev Kazarinsubject
Discrete mathematicsFinite groupConjectureAlgebra and Number TheoryGroup (mathematics)Prime numberProducts of subgroupsFinite groupsHall subgroupsCombinatoricsLocally finite groupSimple grouppi-structureMATEMATICA APLICADAMinimal counterexampleDirect productpi-decomposable groupsMathematicsdescription
[EN] For a set of primes pi, a group X is said to be pi-decomposable if X = X-pi x X-pi' is the direct product of a pi-subgroup X-pi and a pi'-subgroup X-pi', where pi' is the complementary of pi in the set of all prime numbers. The main result of this paper is a reduction theorem for the following conjecture: "Let pi be a set of odd primes. If the finite group G = AB is a product of two pi-decomposable subgroups A = A(pi) x A(pi') and B = B-pi x B-pi', then A(pi)B(pi) = B(pi)A(pi) and this is a Hall pi-subgroup of G." We establish that a minimal counterexample to this conjecture is an almost simple group. The conjecture is then achieved in a forthcoming paper. (C) 2013 Elsevier Inc. All rights reserved.
year | journal | country | edition | language |
---|---|---|---|---|
2013-04-01 | Journal of Algebra |