0000000000012870

AUTHOR

María Dolores Pérez-ramos

showing 33 related works from this author

On the lattice of J-subnormal subgroups

1992

CombinatoricsMiller indexReciprocal latticeParticle in a one-dimensional latticeAlgebra and Number TheoryLattice constantLattice planeEmpty lattice approximationHexagonal latticeLattice (discrete subgroup)MathematicsJournal of Algebra
researchProduct

On the Lattice of F-Dnormal Subgroups in Finite Soluble Groups

2001

Lattice (module)Algebra and Number TheoryCondensed matter physicsMathematicsJournal of Algebra
researchProduct

Saturated formations and products of connected subgroups

2011

Abstract For a non-empty class of groups C , two subgroups A and B of a group G are said to be C -connected if 〈 a , b 〉 ∈ C for all a ∈ A and b ∈ B . Given two sets π and ρ of primes, S π S ρ denotes the class of all finite soluble groups that are extensions of a normal π-subgroup by a ρ-group. It is shown that in a finite group G = A B , with A and B soluble subgroups, then A and B are S π S ρ -connected if and only if O ρ ( B ) centralizes A O π ( G ) / O π ( G ) , O ρ ( A ) centralizes B O π ( G ) / O π ( G ) and G ∈ S π ∪ ρ . Moreover, if in this situation A and B are in S π S ρ , then G is in S π S ρ . This result is then extended to a large family of saturated formations F , the so-c…

CombinatoricsDiscrete mathematicsFinite groupAlgebra and Number Theory2-generated subgroupsGroup (mathematics)Products of subgroupsPermutable primeFinite groupsSaturated formationsSoluble groupsMathematicsJournal of Algebra
researchProduct

Nilpotent-like fitting formations of finite soluble groups

2000

[EN] In this paper the subnormal subgroup closed saturated formations of finite soluble groups containing nilpotent groups are fully characterised by means of extensions of well-known properties enjoyed by the formation of all nilpotent groups.

CombinatoricsMathematics::Group TheoryNilpotentFactorizationGeneral MathematicsLattice (order)Partition (number theory)MATEMATICA APLICADANotationFitting subgroupDirect productMathematicsBulletin of the Australian Mathematical Society
researchProduct

A Question of R. Maier Concerning Formations

1996

The formation f is said to be saturated if the group G belongs to f Ž . whenever the Frattini factor group GrF G is in f. Let P be the set of all prime numbers. A formation function is a Ž . function f defined on P such that f p is a, possibly empty, formation. A formation f is said to be a local formation if there exists a formation Ž function f such that f s G g G : if HrK is a chief factor of G and p < < Ž . Ž .. divides HrK , then GrC HrK g f p ; G is the class of all finite G groups. If f is a local formation defined by a formation function f , then Ž . we denote f s LF f and f is a local definition of f. Among all possible local definitions of a local formation f there exists exactly …

CombinatoricsNormal subgroupAlgebra and Number TheoryGroup (mathematics)Prime numberFunction (mathematics)QuotientMathematicsJournal of Algebra
researchProduct

Pronormal subgroups of a direct product of groups

2009

[EN] We give criteria to characterize abnormal, pronormal and locally pronormal subgroups of a direct product of two finite groups A×B, under hypotheses of solvability for at least one of the factors, either A or B.

AlgebraAlgebra and Number TheoryDirect productsDirect product of groupsLocally finite groupPronormal subgroupsMATEMATICA APLICADAFinite groupsAbnormal subgroupsMathematicsJournal of Algebra
researchProduct

Nilpotent length and system permutability

2022

Abstract If C is a class of groups, a C -injector of a finite group G is a subgroup V of G with the property that V ∩ K is a C -maximal subgroup of K for all subnormal subgroups K of G. The classical result of B. Fischer, W. Gaschutz and B. Hartley states the existence and conjugacy of F -injectors in finite soluble groups for Fitting classes F . We shall show that for groups of nilpotent length at most 4, F -injectors permute with the members of a Sylow basis in the group. We shall exhibit the construction of a Fitting class and a group of nilpotent length 5, which fail to satisfy the result and show that the bound is the best possible.

CombinatoricsMathematics::Group TheoryMaximal subgroupNilpotentFinite groupClass (set theory)Algebra and Number TheoryConjugacy classGroup (mathematics)Sylow theoremsBasis (universal algebra)MathematicsJournal of Algebra
researchProduct

On mutually permutable products of finite groups

2005

Abstract In this paper a structural theorem about mutually permutable products of finite groups is obtained. This result is used to derive some results on mutually permutable products of groups whose chief factors are simple. Some earlier results on mutually permutable products of supersoluble groups appear as particular cases.

AlgebraMathematics::CombinatoricsAlgebra and Number TheoryStructural theoremSimple (abstract algebra)Permutable primeMathematicsJournal of Algebra
researchProduct

Characterizations of Schunck Classes of Finite Soluble Groups

1998

All groups considered in this paper are finite and soluble.Characterization of Schunck classes and saturated formations by meansof certain embedding properties of their associated projectors plays animportant part in the Theory of Classes of Groups.Schunck classes whose projectors are normal subgroups were studied byBlessenohl and Gaschutz. They characterize these classes as the classes

Normal subgroupAlgebraAlgebra and Number TheoryEmbeddingMathematicsJournal of Algebra
researchProduct

Injectors and Radicals in Products of Totally Permutable Groups

2003

Abstract Two subgroups H and K of a group G are said to be totally permutable if every subgroup of H permutes with every subgroup of K. In this paper the behaviour of radicals and injectors associated to Fitting classes in a product of pairwise totally permutable finite groups is studied.

CombinatoricsDiscrete mathematicsMathematics::Group TheoryMathematics::CombinatoricsAlgebra and Number TheoryGroup (mathematics)Product (mathematics)Permutable primeMathematicsCommunications in Algebra
researchProduct

Products of pairwise totally permutable groups

2003

[EN] In this paper finite groups factorized as products of pairwise totally permutable subgroups are studied in the framework of Fitting classes

AlgebraDiscrete mathematicsMathematics Subject ClassificationGeneral MathematicsPairwise comparisonPermutable primeProducts of groupsFitting classesMATEMATICA APLICADAFinite groupsMathematics
researchProduct

Injective Fitting sets in automorphism groups

1993

CombinatoricsInner automorphismQuasisimple groupHolomorphGeneral MathematicsSO(8)Alternating groupOuter automorphism groupAutomorphismDivisible groupMathematicsArchiv der Mathematik
researchProduct

On the product of a π-group and a π-decomposable group

2007

[EN] The main result in the paper states the following: Let π be a set of odd primes. Let the finite group G=AB be the product of a π -decomposable subgroup A=Oπ(A)×Oπ′(A) and a π -subgroup B . Then Oπ(A)⩽Oπ(G); equivalently the group G possesses Hall π -subgroups. In this case Oπ(A)B is a Hall π-subgroup of G. This result extends previous results of Berkovich (1966), Rowley (1977), Arad and Chillag (1981) and Kazarin (1980) where stronger hypotheses on the factors A and B of the group G were being considered. The results under consideration in the paper provide in particular criteria for the existence of non-trivial soluble normal subgroups for a factorized group G.

Normal subgroupFinite groupAlgebra and Number TheoryGroup (mathematics)Products of groupsHall subgroupsCombinatoricsSet (abstract data type)π-Decomposable groupsProduct (mathematics)MATEMATICA APLICADAπ-GroupsMathematicsJournal of Algebra
researchProduct

A self-centralizing characteristic subgroup

1989

AbstractIn this note we introduce a self-centralizing characteristic subgroup, associated with quasinilpotent injectors, of a finite group.

Pure mathematicsFinite groupGeneral MedicineCharacteristic subgroupMathematicsJournal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics
researchProduct

Permutability of injectors with a central socle in a finite solvable group

2017

In response to an Open Question of Doerk and Hawkes [5, IX Section 3, page 615], we shall show that if Zπ is the Fitting class formed by the finite solvable groups whose π-socle is central (where π is a set of prime numbers), then the Zπ-injectors of a finite solvable group G permute with the members of a Sylow basis in G. The proof depends on the properties of certain extraspecial groups [4].

Class (set theory)Algebra and Number Theory010102 general mathematicsSylow theoremsPrime numberBasis (universal algebra)01 natural sciencesFitting subgroupSet (abstract data type)CombinatoricsSection (category theory)Solvable group0103 physical sciences010307 mathematical physics0101 mathematicsMathematicsJournal of Algebra
researchProduct

Fitting sets pairs

2000

Discrete mathematicsAlgebra and Number TheoryMathematics
researchProduct

On finite products of groups and supersolubility

2010

Two subgroups X and Y of a group G are said to be conditionally permutable in G if X permutes with Y(g) for some element g E G. i.e., XY(g) is a subgroup of G. Using this permutability property new criteria for the product of finite supersoluble groups to be supersoluble are obtained and previous results are recovered. Also the behaviour of the supersoluble residual in products of finite groups is studied.

CombinatoricsConditional permutabilityAlgebra and Number TheoryGroup (mathematics)Product (mathematics)Products of subgroupsPermutable primeElement (category theory)MATEMATICA APLICADAFinite groupsSupersoluble groupsMathematicsJournal of Algebra
researchProduct

Finite groups which are products of pairwise totally permutable subgroups

1998

Finite groups which are products of pairwise totally permutable subgroups are studied in this paper. The -residual, -projectors and -normalizers in such groups are obtained from the corresponding subgroups of the factor subgroups under suitable hypotheses.

CombinatoricsLocally finite groupGeneral MathematicsPairwise comparisonPermutable primeResidualMathematicsProceedings of the Edinburgh Mathematical Society
researchProduct

On conditional permutability and saturated formations

2011

Two subgroups A and B of a group G are said to be totally completely conditionally permutable (tcc-permutable) in G if X permutes with Yg for some g ¿ ¿X, Y¿ for all X ¿ A and Y ¿ B. We study the belonging of a finite product of tcc-permutable subgroups to a saturated formation of soluble groups containing all finite supersoluble groups. © 2011 Edinburgh Mathematical Society.

CombinatoricsConditional permutabilityGroup (mathematics)General MathematicsProduct (mathematics)Products of subgroupsMATEMATICA APLICADAFinite groupsSaturated formationsMathematics
researchProduct

A family of dominant Fitting classes of finite soluble groups

1998

[EN] In this paper a large family of dominant Fitting classes of finite soluble groups and the description of the corresponding injectors are obtained. Classical constructions of nilpotent and Lockett injectors as well as p-nilpotent injectors arise as particular cases.

AlgebraNilpotentGeneral MedicineMATEMATICA APLICADAMathematics
researchProduct

Fitting classes and lattice formations I

2004

AbstractA lattice formation is a class of groups whose elements are the direct product of Hall subgroups corresponding to pairwise disjoint sets of primes. In this paper Fitting classes with stronger closure properties involving F-subnormal subgroups, for a lattice formation F of full characteristic, are studied. For a subgroup-closed saturated formation G, a characterisation of the G-projectors of finite soluble groups is also obtained. It is inspired by the characterisation of the Carter subgroups as the N-projectors, N being the class of nilpotent groups.

Discrete mathematicsMathematics::Group TheoryClass (set theory)Pure mathematicsGeneral MathematicsClosure (topology)Lattice (group)Fitting subgroupMathematicsJournal of the Australian Mathematical Society
researchProduct

A reduction theorem for a conjecture on products of two π -decomposable groups

2013

[EN] For a set of primes pi, a group X is said to be pi-decomposable if X = X-pi x X-pi' is the direct product of a pi-subgroup X-pi and a pi'-subgroup X-pi', where pi' is the complementary of pi in the set of all prime numbers. The main result of this paper is a reduction theorem for the following conjecture: "Let pi be a set of odd primes. If the finite group G = AB is a product of two pi-decomposable subgroups A = A(pi) x A(pi') and B = B-pi x B-pi', then A(pi)B(pi) = B(pi)A(pi) and this is a Hall pi-subgroup of G." We establish that a minimal counterexample to this conjecture is an almost simple group. The conjecture is then achieved in a forthcoming paper. (C) 2013 Elsevier Inc. All ri…

Discrete mathematicsFinite groupConjectureAlgebra and Number TheoryGroup (mathematics)Prime numberProducts of subgroupsFinite groupsHall subgroupsCombinatoricsLocally finite groupSimple grouppi-structureMATEMATICA APLICADAMinimal counterexampleDirect productpi-decomposable groupsMathematicsJournal of Algebra
researchProduct

On finite products of totally permutable groups

1996

In this paper the structure of finite groups which are the product of two totally permutable subgroups is studied. In fact we can obtain the -residual, where is a formation, -projectors and -normalisers, where is a saturated formation, of the group from the corresponding subgroups of the factor subgroups.

Base (group theory)Pure mathematicsGroup (mathematics)Symmetric groupGeneral MathematicsProduct (mathematics)Structure (category theory)Permutable primeCyclic permutationMathematicsBulletin of the Australian Mathematical Society
researchProduct

2-Engel relations between subgroups

2016

Abstract In this paper we study groups G generated by two subgroups A and B such that 〈 a , b 〉 is nilpotent of class at most 2 for all a ∈ A and b ∈ B . A detailed description of the structure of such groups is obtained, generalizing the classical result of Hopkins and Levi on 2-Engel groups.

Study groupsNilpotentPure mathematicsClass (set theory)Algebra and Number Theory010102 general mathematics0502 economics and business05 social sciencesStructure (category theory)050207 economics0101 mathematics01 natural sciencesMathematics
researchProduct

OnF-Subnormal Subgroups andF-Residuals of Finite Soluble Groups

1996

All groups that we consider are finite and soluble. Recall that a formation is a class of groups which is closed under homomorphic images and subdirect products. Hence, if F is a formation and G is a group which is a direct product of the subgroups A and B, then G is in F if and only if A and B lie in F. More generally, Doerk and w x Hawkes 4, IV, 1.18 proved that if G is a group such that G s A = B, then G s A = B , where G is the F-residual of G, that is, the smallest normal subgroup of G with quotient in F. The main purpose of this paper is the development of this result by means of the concept of F-subnormal subgroup. Suppose that F is a saturated formation. A maximal subgroup M of a Ž …

CombinatoricsNormal subgroupMaximal subgroupNilpotentAlgebra and Number TheoryGroup (mathematics)Direct productQuotientMathematicsJournal of Algebra
researchProduct

SATURATED FORMATIONS CLOSED UNDER SYLOW NORMALIZERS

2005

In this article we show that a finite soluble group possesses nilpotent Hall subgroups for well-defined sets of primes if and only if its Sylow normalizers satisfy the same property. In fact, this property of groups provides a characterization of the subgroup-closed saturated formations, whose elements are characterized by the Sylow normalizers belonging to the class, in the universe of all finite soluble groups.

Mathematics::Group TheoryPure mathematicsNilpotentClass (set theory)Algebra and Number TheoryProperty (philosophy)Group (mathematics)Locally finite groupSylow theoremsCharacterization (mathematics)MathematicsCommunications in Algebra
researchProduct

FINITE TRIFACTORISED GROUPS AND -DECOMPOSABILITY

2018

We derive some structural properties of a trifactorised finite group $G=AB=AC=BC$, where $A$, $B$, and $C$ are subgroups of $G$, provided that $A=A_{\unicode[STIX]{x1D70B}}\times A_{\unicode[STIX]{x1D70B}^{\prime }}$ and $B=B_{\unicode[STIX]{x1D70B}}\times B_{\unicode[STIX]{x1D70B}^{\prime }}$ are $\unicode[STIX]{x1D70B}$-decomposable groups, for a set of primes $\unicode[STIX]{x1D70B}$.

Finite groupPure mathematicsGeneral Mathematics010102 general mathematicsStructure (category theory)Products of subgroupsFinite groups01 natural sciences010101 applied mathematicsSet (abstract data type)IUMPApi-structure0101 mathematicsMATEMATICA APLICADApi-decomposable groupsMathematicsBulletin of the Australian Mathematical Society
researchProduct

Two Questions of L. A. Shemetkov on Critical Groups

1996

Throughout the paper we consider only finite groups. Let X be a class of groups. A group G is called s-critical for X , or simply X-critical, if G is not in X but all proper subgroups of G are in X. w Ž .x Ž . Following Doerk and Hawkes 3, VII, 6.1 , we denote Crit X the class s of all X-critical groups. Knowledge of the structure of the groups in Ž . Crit X for a class of groups X can often help one to obtain detailed s information for the structure of the groups belonging to X. Ž w Ž .x. O. J. Schmidt see 5, III, 5.2 studied the N-critical groups, where N is the formation of the nilpotent groups. These groups are also called w x Schmidt groups. In 2 , answering to a question posed by Shem…

CombinatoricsClass (set theory)NilpotentProperty (philosophy)Algebra and Number TheoryGroup (mathematics)Structure (category theory)Cyclic groupMathematicsUniverse (mathematics)Journal of Algebra
researchProduct

Permutability in finite soluble groups

1994

Let G be a finite soluble group and let Σ be a Hall system of G. A subgroup U of G is said to be Σ-permutable if U permutes with every member of Σ. In [1; I, 4·29] it is proved that if U and V are Σ-permutable subgroups of G then so also are U ∩ V and 〈U, V〉.

CombinatoricsGroup (mathematics)General MathematicsGeometryPermutable primeMathematicsMathematical Proceedings of the Cambridge Philosophical Society
researchProduct

Fitting classes and products of totally permutable groups

2002

The second and third authors have been supported by Proyecto PB 97-0674-C02-02 of DGESIC, Ministerio de Educación y Cultura, Spain.

CombinatoricsAlgebra and Number TheoryPermutable primeMATEMATICA APLICADAMathematics
researchProduct

On a question of chambers and makan

1996

General MathematicsMathematics educationMathematicsMathematische Zeitschrift
researchProduct

Injectors with a central socle in a finite solvable group

2013

Abstract In response to an Open Question of Doerk and Hawkes (1992) [2, IX §4, p. 628] , we shall describe three constructions for the Z π -injectors of a finite solvable group, where Z π is the Fitting class formed by the finite solvable groups whose π -socle is central (and π is a set of prime numbers).

Class (set theory)Algebra and Number Theoryfitting classinjectorPrime numberFitting subgroupCombinatoricsSet (abstract data type)Soclecentral socleSolvable groupfinite solvable group theoryNilpotent groupMathematics
researchProduct

Injectors with a normal complement in a finite solvable group

2011

Abstract Suppose G is a finite solvable group, and H is a subgroup with a normal complement in G. We shall find necessary and sufficient conditions (some of which are related to the properties of coprime actions) for H to be an injector in G. We shall also use these criteria to find characterizations of injectors which need not have a normal complement.

AlgebraAlgebra and Number TheoryCoprime integersSolvable groupinjectorfitting setfinite solvable group theorynormal complementComplement (complexity)Mathematics
researchProduct