6533b7dafe1ef96bd126e9ee

RESEARCH PRODUCT

Nilpotent length and system permutability

María Dolores Pérez-ramosRex DarkArnold D. Feldman

subject

CombinatoricsMathematics::Group TheoryMaximal subgroupNilpotentFinite groupClass (set theory)Algebra and Number TheoryConjugacy classGroup (mathematics)Sylow theoremsBasis (universal algebra)Mathematics

description

Abstract If C is a class of groups, a C -injector of a finite group G is a subgroup V of G with the property that V ∩ K is a C -maximal subgroup of K for all subnormal subgroups K of G. The classical result of B. Fischer, W. Gaschutz and B. Hartley states the existence and conjugacy of F -injectors in finite soluble groups for Fitting classes F . We shall show that for groups of nilpotent length at most 4, F -injectors permute with the members of a Sylow basis in the group. We shall exhibit the construction of a Fitting class and a group of nilpotent length 5, which fail to satisfy the result and show that the bound is the best possible.

https://doi.org/10.1016/j.jalgebra.2021.08.028