Search results for "pine"

showing 10 items of 2022 documents

Serratus anterior contraction during resisted arm extension (GravityFit) assessed by MRI

2019

Background: Scapular stabilization is a common focus of shoulder rehabilitation. Objective: Examine contraction of serratus anterior during a bilateral arm extension exercise with axial compression using an exercise device (GravityFit) by magnetic resonance imaging (MRI). Methods: MRI was performed under two conditions: rest and static arm extension with axial compression. Load was set at 20% of age, sex and weight estimated bench press one-repetition maximum. A T2-weighted sequence was used to collect 14 axial images of the upper thoracic spine and shoulder bilaterally. Mean muscle length and thickness were calculated for the whole muscle and in equidistant subregions of the muscle in its …

0301 basic medicineContraction (grammar)PhysiologymusclelihaksetBench presslcsh:PhysiologyfysioterapiarehabilitationUpper thoracic spine03 medical and health sciences0302 clinical medicineShoulder rehabilitationPhysiology (medical)Axial compressionupper extremityMedicinephysical therapyTransversus abdominisphysiotherapyOriginal Research030222 orthopedicslcsh:QP1-981medicine.diagnostic_testexercisebusiness.industrymagneettikuvausMagnetic resonance imagingAnatomyTrunk030104 developmental biologykuntoutusvoimaharjoittelubusiness
researchProduct

Cofilin and Neurodegeneration: New Functions for an Old but Gold Protein

2021

Cofilin is an actin-binding protein that plays a major role in the regulation of actin dynamics, an essential cellular process. This protein has emerged as a crucial molecule for functions of the nervous system including motility and guidance of the neuronal growth cone, dendritic spine organization, axonal branching, and synaptic signalling. Recently, other important functions in cell biology such as apoptosis or the control of mitochondrial function have been attributed to cofilin. Moreover, novel mechanisms of cofilin function regulation have also been described. The activity of cofilin is controlled by complex regulatory mechanisms, with phosphorylation being the most important, since t…

0301 basic medicineDendritic spine organizationCellMotilityNeurosciences. Biological psychiatry. NeuropsychiatryReviewmacromolecular substancescofilinBiologyenvironment and public health03 medical and health sciences0302 clinical medicinemedicineneurodegenerative diseasescofilin–actin rodsGeneral Neurosciencemitochondrial fissionNeurodegenerationapoptosisCofilinmedicine.diseaseCell biologymicrotubule instability030104 developmental biologymedicine.anatomical_structurePhosphorylationMitochondrial fission030217 neurology & neurosurgeryFunction (biology)RC321-571Brain Sciences
researchProduct

The activation of NMDA receptors alters the structural dynamics of the spines of hippocampal interneurons

2017

N-Methyl-d-Aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play a key role in the structural plasticity of excitatory neurons, but to date little is known about their influence on the remodeling of interneurons. Among hippocampal interneurons, the somatostatin expressing cells in the CA1 stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change their density in response to different stimuli. In order to understand the role of NMDAR activation on the structural dynamics of the spines of somatostatin expressing interneurons in …

0301 basic medicineDendritic spineDendritic SpinesHippocampusHippocampal formationBiologyHippocampusReceptors N-Methyl-D-Aspartate03 medical and health sciences0302 clinical medicineInterneuronsAnimalsReceptorCells CulturedMice KnockoutPyramidal Cellsmusculoskeletal neural and ocular physiologyGeneral NeuroscienceLong-term potentiationSpine030104 developmental biologySomatostatinnervous systemExcitatory postsynaptic potentialNMDA receptorSomatostatinNeuroscience030217 neurology & neurosurgeryNeuroscience Letters
researchProduct

Alterations in Tau Protein Level and Phosphorylation State in the Brain of the Autistic-Like Rats Induced by Prenatal Exposure to Valproic Acid

2021

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficient social interaction and communication besides repetitive, stereotyped behaviours. A characteristic feature of ASD is altered dendritic spine density and morphology associated with synaptic plasticity disturbances. Since microtubules (MTs) regulate dendritic spine morphology and play an important role in spine development and plasticity the aim of the present study was to investigate the alterations in the content of neuronal α/β-tubulin and Tau protein level as well as phosphorylation state in the valproic acid (VPA)-induced rat model of autism. Our results indicated that maternal exposure to VPA indu…

0301 basic medicineDendritic spineHippocampuslcsh:Chemistry0302 clinical medicinePregnancyTubulinPhosphorylationlcsh:QH301-705.5SpectroscopyValproic AcidbiologyERK1/2Chemistryautism spectrum disorders (ASD)valproic acid (VPA)BrainGeneral MedicineImmunohistochemistryComputer Science Applicationsmedicine.anatomical_structureCerebral cortexMaternal ExposurePrenatal Exposure Delayed EffectsFemaleDisease Susceptibilitymedicine.drugSignal Transductionmedicine.medical_specialtyCDK5Tau proteintau ProteinsCatalysisArticleInorganic Chemistry03 medical and health sciencesInternal medicinemental disordersmedicineAnimalsPhysical and Theoretical ChemistryAutistic DisorderMolecular BiologyCyclin-dependent kinase 5GSK-3βValproic AcidOrganic Chemistryα/β-tubulinRatsEnzyme Activation030104 developmental biologyEndocrinologylcsh:Biology (General)lcsh:QD1-999MAP-TauChromatolysisSynaptic plasticitybiology.proteinAkt/mTOR signalling030217 neurology & neurosurgeryBiomarkersInternational Journal of Molecular Sciences
researchProduct

Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material

2017

Brain development requires correct targeting of multiple thousand synaptic terminals onto staggeringly complex dendritic arbors. The mechanisms by which input synapse numbers are matched to dendrite size, and by which synaptic inputs from different transmitter systems are correctly partitioned onto a postsynaptic arbor, are incompletely understood. By combining quantitative neuroanatomy with targeted genetic manipulation of synaptic input to an identified Drosophila neuron, we show that synaptic inputs of two different transmitter classes locally direct dendrite growth in a competitive manner. During development, the relative amounts of GABAergic and cholinergic synaptic drive shift dendrit…

0301 basic medicineDendritic spinePresynaptic TerminalsBiologyReceptors NicotinicArticleSynapse03 medical and health sciencesDendrite (crystal)Calcium Channels T-Type0302 clinical medicinePostsynaptic potentialSynaptic augmentationmedicineAnimalsDrosophila ProteinsCalcium Signalinggamma-Aminobutyric AcidNeuronsNeuronal PlasticityGeneral NeuroscienceDendritesReceptors GABA-AAcetylcholine030104 developmental biologySynaptic fatiguemedicine.anatomical_structurenervous systemSynaptic plasticitySynapsesDrosophilaNeuronNeuroscience030217 neurology & neurosurgery
researchProduct

Neuronal LRP4 regulates synapse formation in the developing CNS

2017

The low-density lipoprotein receptor-related protein 4 (LRP4) is essential in muscle fibers for the establishment of the neuromuscular junction. Here, we show that LRP4 is also expressed by embryonic cortical and hippocampal neurons, and that downregulation of LRP4 in these neurons causes a reduction in density of synapses and number of primary dendrites. Accordingly, overexpression of LRP4 in cultured neurons had the opposite effect inducing more but shorter primary dendrites with an increased number of spines. Transsynaptic tracing mediated by rabies virus revealed a reduced number of neurons presynaptic to the cortical neurons in which LRP4 was knocked down. Moreover, neuron-specific kno…

0301 basic medicineDendritic spineRabiesSynaptogenesisHippocampusBiologyHippocampal formationHippocampusNeuromuscular junctionGene Knockout TechniquesMice03 medical and health sciences0302 clinical medicinemedicineAnimalsLrp4 ; Central Nervous System Development ; Synapse Formation ; Dendritogenesis ; Transsynaptic Tracing ; Agrin ; In Utero Electroporation ; Psd95 ; Bassoon ; MouseMolecular BiologyCells CulturedLDL-Receptor Related ProteinsCerebral CortexGene knockdownAgrinDendritesCortex (botany)Cell biologyMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureReceptors LDLnervous systemRabies virusSynapsesImmunology030217 neurology & neurosurgeryDevelopmental Biology
researchProduct

Regulation of Dendritic Spine Morphology in Hippocampal Neurons by Copine-6.

2015

Dendritic spines compartmentalize information in the brain, and their morphological characteristics are thought to underly synaptic plasticity. Here we identify copine-6 as a novel modulator of dendritic spine morphology. We found that brain-derived neurotrophic factor (BDNF) - a molecule essential for long-term potentiation of synaptic strength - upregulated and recruited copine-6 to dendritic spines in hippocampal neurons. Overexpression of copine-6 increased mushroom spine number and decreased filopodia number, while copine-6 knockdown had the opposite effect and dramatically increased the number of filopodia, which lacked PSD95. Functionally, manipulation of post-synaptic copine-6 level…

0301 basic medicineDendritic spineVesicular Inhibitory Amino Acid Transport Proteinsdrug effects [Synapses]Tropomyosin receptor kinase BHippocampal formationgenetics [Carrier Proteins]pharmacology [Brain-Derived Neurotrophic Factor]Hippocampusmetabolism [Vesicular Inhibitory Amino Acid Transport Proteins]Mtap2 protein ratMice0302 clinical medicineNeurotrophic factorsdrug effects [Synaptic Vesicles]genetics [Nerve Tissue Proteins]Cells Culturedultrastructure [Neurons]NeuronsChemistryLong-term potentiationSynaptic Potentialsphysiology [Neurons]physiology [Dendritic Spines]Cell biologyultrastructure [Dendritic Spines]metabolism [Receptor trkB]Synaptic VesiclesFilopodiaultrastructure [Synaptosomes]Disks Large Homolog 4 ProteinMicrotubule-Associated ProteinsCognitive NeuroscienceDendritic Spinesmetabolism [Disks Large Homolog 4 Protein]Nerve Tissue Proteinsgenetics [Receptor trkB]03 medical and health sciencesCellular and Molecular NeuroscienceOrgan Culture Techniquesphysiology [Synaptic Vesicles]metabolism [Vesicular Glutamate Transport Protein 1]TrkB protein ratdrug effects [Synaptic Potentials]Synaptic vesicle recyclingAnimalsHumansReceptor trkBddc:610metabolism [Synaptosomes]metabolism [Nerve Tissue Proteins]Viaat protein ratBrain-Derived Neurotrophic Factormetabolism [Microtubule-Associated Proteins]Rats030104 developmental biologygenetics [Synaptic Potentials]nervous systemcytology [Hippocampus]Synaptic plasticityultrastructure [Synapses]SynapsesVesicular Glutamate Transport Protein 1CPNE6 protein ratphysiology [Synapses]Carrier Proteins030217 neurology & neurosurgerymetabolism [Carrier Proteins]SynaptosomesCerebral cortex (New York, N.Y. : 1991)
researchProduct

NMDA Receptors Regulate the Structural Plasticity of Spines and Axonal Boutons in Hippocampal Interneurons

2017

N-methyl-D-aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play an important role in the adult structural plasticity of excitatory neurons, but their impact on the remodeling of interneurons is unknown. Among hippocampal interneurons, somatostatin-expressing cells located in the stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change density in response to different stimuli. In order to understand the role of NMDARs on the structural plasticity of these interneurons, we have injected acutely MK-801, an NMDAR antagonist, to …

0301 basic medicineDendritic spineorganotypic culturesEn passantHippocampusHippocampal formationBiologyspine dynamicslcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineReceptorlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchMK-801interneuronsmusculoskeletal neural and ocular physiologyaxonal boutonsNMDARSpine (zoology)030104 developmental biologynervous systemExcitatory postsynaptic potentialNMDA receptorNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

Enhanced Prefrontal Neuronal Activity and Social Dominance Behavior in Postnatal Forebrain Excitatory Neuron-Specific Cyfip2 Knock-Out Mice

2020

The cytoplasmic fragile X mental retardation 1 (FMR1)-interacting protein 2 (CYFIP2) gene is associated with epilepsy, intellectual disability (ID), and developmental delay, suggesting its critical role in proper neuronal development and function. CYFIP2 is involved in regulating cellular actin dynamics and also interacts with RNA-binding proteins. However, the adult brain function of CYFIP2 remains unclear because investigations thus far are limited to Cyfip2 heterozygous (Cyfip2+/- ) mice owing to the perinatal lethality of Cyfip2-null mice. Therefore, we generated Cyfip2 conditional knock-out (cKO) mice with reduced CYFIP2 expression in postnatal forebrain excitatory neurons (CaMKIIα-Cre…

0301 basic medicineDendritic spinesocial dominanceBiologyFilamentous actinneuronal activitylcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineexcitabilityCYFIP2Premovement neuronal activityPrefrontal cortexlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryMolecular BiologyBrief Research ReportFMR1030104 developmental biologyKnockout mouseForebrainExcitatory postsynaptic potentialNeurosciencemedial prefrontal cortex030217 neurology & neurosurgeryNeuroscienceFrontiers in Molecular Neuroscience
researchProduct

Chemometric Study on Alkaline Pre-treatments of Wood Chips Prior to Pulping

2016

Alkaline pre-treatments were performed for the production of organics-containing effluents from silver/white birch (Betula pendula/pubescens) and Scots pine (Pinus sylvestris) chips prior to chemical pulping. Pre-treatment conditions were varied with respect to time (from 30 min to 120 min), temperature (130 °C and 150 °C), and alkali charge (1, 2, 3, 4, 6, and 8% of NaOH on oven-dried wood). The analytical data (total content, weight average molar mass, and molar mass distribution) on dissolved lignin were subjected to principal component analysis to examine the relationship between molar mass and molar mass distributions in lignin removed from different wood species under varying alkaline…

0301 basic medicineEnvironmental Engineeringlcsh:BiotechnologyPrincipal component analysisBioengineering02 engineering and technologyLignincomplex mixtures03 medical and health scienceschemistry.chemical_compoundlcsh:TP248.13-248.65Chemical pulpLigninBiorefiningChemometricsalkaline pre-treatmentWaste Management and DisposalMolar massChromatographybiologyChemistrymoolimassafungitechnology industry and agricultureScots pineligniinichemometrics021001 nanoscience & nanotechnologybiology.organism_classificationAlkali metalchemical pulping030104 developmental biologyAlkaline pre-treatmentBetula pendulaBiorefiningMolar mass distributionScots pineMolar mass distributionbiorefiningSilver/white birch0210 nano-technologyWoody plantNuclear chemistryBioResources
researchProduct