Search results for "plane"
showing 10 items of 6821 documents
The roles of microlites and phenocrysts during degassing of silicic magma
2022
Abstract Silicic magmas span a wide range of eruptive styles between explosive and effusive, and transitions between these styles are commonplace. Yet the triggers of switches in eruptive style remain poorly understood. Eruptions are mostly driven by degassing of magmatic water and their eruption style - effusive or explosive - is likely governed by the efficiency of outgassing as well as magma ascent rate. Microlites and phenocrysts are often purported to promote heterogeneous bubble nucleation and outgassing, both key variables in the degassing dynamics that become crucial in controlling the eruptive style. Here, in order to shed light on the role of nature, size and abundance of crystals…
LAI, FAPAR and FCOVER ground-truth map creation from FASat-C satellite imagery and in-situ measurements in Chimbarongo, Chile, for satellite products…
2016
[EN] In remote sensing, validation exercises are essential to ensure the quality of the products originated from satellite Earth observations. To assess the measurement uncertainty derived from satellite products, several ground field data from different ecosystems must be available for use. In the same order of importance, it is necessary to define data sampling and up-scaling methodologies to allow a suitable comparison between the ground data and the pixel size of the product. This paper shows the applied methodology used in the FP7 ImagineS project (Implementing Multi-scale Agricultural Indicators Exploiting Sentinels) to validate 10-days global LAI, FAPAR and vegetation cover products …
Vegetation vulnerability to drought in Spain
2014
[EN] Frequency of climatic extremes like long duration droughts has increased in Spain over the last century.The use of remote sensing observations for monitoring and detecting drought is justified on the basis that vegetation vigor is closely related to moisture condition. We derive satellite estimates of bio-physical variables such as fractional vegetation cover (FVC) from MODIS/EOS and SEVIRI/MSG time series. The study evaluates the strength of temporal relationships between precipitation and vegetation condition at time-lag and cumulative rainfall intervals. From this analysis, it was observed that the climatic disturbances affected both the growing season and the total amount of vegeta…
A review of environmental impacts of winter road maintenance
2019
Abstract The need for winter road maintenance (WRM) is changing in cold regions due to climate change. How the different modes of WRM will contribute to future overall emissions from infrastructure is therefore of great interest to road owners with a view to a more sustainable, low-carbon future. In the quest for near-zero-emissions transport, all aspects of the transport sector need to be accounted for in the search for possible mitigation of emissions. This study used 35 peer-reviewed articles published between 2000 and 2018 to map available information on the environmental impacts and effect of WRM and reveal any research gaps. The articles were categorized according to their research th…
Quantifying and easing conflicting goals between interest groups in natural resource planning
2019
Management of natural resources at the regional level is a compromise between a variety of objectives and interests. At the local level, management of the forests depends upon the ownership structure, with forest owners using their forests as they see fit. A potential conflict occurs if the forest owners’ management decisions are counter to the interests of society in general or the industry that relies on the forest resource as their raw material. We explore the intensity of this conflict at the regional level in several large boreal forest production landscapes. To explore the conflict, we investigate three main interest groups: (i) economically oriented forest owners; (ii) industry grou…
Sun-induced chlorophyll fluorescence III: benchmarking retrieval methods and sensor characteristics for proximal sensing
2019
[EN] The interest of the scientific community on the remote observation of sun-induced chlorophyll fluorescence (SIF) has increased in the recent years. In this context, hyperspectral ground measurements play a crucial role in the calibration and validation of future satellite missions. For this reason, the European cooperation in science and technology (COST) Action ES1309 OPTIMISE has compiled three papers on instrument characterization, measurement setups and protocols, and retrieval methods (current paper). This study is divided in two sections; first, we evaluated the uncertainties in SIF retrieval methods (e.g., Fraunhofer line depth (FLD) approaches and spectral fitting method (SFM))…
Controlled time integration for the numerical simulation of meteor radar reflections
2016
We model meteoroids entering the Earth[U+05F3]s atmosphere as objects surrounded by non-magnetized plasma, and consider efficient numerical simulation of radar reflections from meteors in the time domain. Instead of the widely used finite difference time domain method (FDTD), we use more generalized finite differences by applying the discrete exterior calculus (DEC) and non-uniform leapfrog-style time discretization. The computational domain is presented by convex polyhedral elements. The convergence of the time integration is accelerated by the exact controllability method. The numerical experiments show that our code is efficiently parallelized. The DEC approach is compared to the volume …
Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture
2013
Imaging using lightweight, unmanned airborne vehicles (UAVs) is one of the most rapidly developing fields in remote sensing technology. The new, tunable, Fabry-Perot interferometer-based (FPI) spectral camera, which weighs less than 700 g, makes it possible to collect spectrometric image blocks with stereoscopic overlaps using light-weight UAV platforms. This new technology is highly relevant, because it opens up new possibilities for measuring and monitoring the environment, which is becoming increasingly important for many environmental challenges. Our objectives were to investigate the processing and use of this new type of image data in precision agriculture. We developed the entire pro…
Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging
2017
Made available in DSpace on 2018-12-11T17:11:58Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-03-01 Suomen Akatemia Small unmanned aerial vehicle (UAV) based remote sensing is a rapidly evolving technology. Novel sensors and methods are entering the market, offering completely new possibilities to carry out remote sensing tasks. Three-dimensional (3D) hyperspectral remote sensing is a novel and powerful technology that has recently become available to small UAVs. This study investigated the performance of UAV-based photogrammetry and hyperspectral imaging in individual tree detection and tree species classification in boreal forests. Eleven test sites with 4151 reference trees repr…
Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks
2020
Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…