Search results for "plasmas"

showing 10 items of 1475 documents

Debates with Small Transparent Quantum Verifiers

2014

We study a model where two opposing provers debate over the membership status of a given string in a language, trying to convince a weak verifier whose coins are visible to all. We show that the incorporation of just two qubits to an otherwise classical constant-space verifier raises the class of debatable languages from at most NP to the collection of all Turing-decidable languages (recursive languages). When the verifier is further constrained to make the correct decision with probability 1, the corresponding class goes up from the regular languages up to at least E.

Class (computer programming)Theoretical computer scienceComputer scienceProgramming languageString (computer science)0102 computer and information sciencescomputer.software_genre01 natural sciences010305 fluids & plasmasRegular language010201 computation theory & mathematicsQubit0103 physical sciencesQuantum finite automataQuantumcomputerZero errorQuantum computer
researchProduct

Approximating hidden chaotic attractors via parameter switching.

2018

In this paper, the problem of approximating hidden chaotic attractors of a general class of nonlinear systems is investigated. The parameter switching (PS) algorithm is utilized, which switches the control parameter within a given set of values with the initial value problem numerically solved. The PS-generated attractor approximates the attractor obtained by averaging the control parameter with the switched values, which represents the hidden chaotic attractor. The hidden chaotic attractors of a generalized Lorenz system and the Rabinovich-Fabrikant system are simulated for illustration. In Refs. 1–3, it is proved that the attractors of a chaotic system, considered as the unique numerical …

Class (set theory)Mathematics::Dynamical SystemsChaoticGeneral Physics and AstronomyFOS: Physical sciences01 natural sciences010305 fluids & plasmasSet (abstract data type)phase space methods0103 physical sciencesAttractorApplied mathematicsInitial value problemdifferentiaalilaskenta010301 acousticsMathematical PhysicsMathematicsApplied Mathematicsta111numerical approximationsStatistical and Nonlinear Physicschaotic systemsLorenz systemchaoticNonlinear Sciences - Chaotic DynamicsNonlinear Sciences::Chaotic DynamicsNonlinear systemkaaosnumeerinen analyysinonlinear systemsChaotic Dynamics (nlin.CD)Chaos (Woodbury, N.Y.)
researchProduct

Wind tunnel study on the size distribution of droplets after collision induced breakup of levitating water drops

2018

Abstract Wind tunnel experiments on collisions between drop pairs of 2.5 and 0.5 mm diameter have been performed and the coalescence and breakup events have been recorded by a high-speed digital camera. From the comprehensive analysis of the captured images, the most important parameters utilized in numerical models, such as coalescence efficiency, breakup type, number of fragments and fragment size distribution after breakup were determined. The experimentally obtained parameters have been compared to parameterizations based on earlier laboratory studies of Low and List, and on direct numerical simulations. A very good agreement between experimental results and parameterizations has been f…

Coalescence (physics)PhysicsAtmospheric Science010504 meteorology & atmospheric sciencesDrop (liquid)Direct numerical simulationMechanicsBreakupCollision01 natural sciences010305 fluids & plasmasFragment size0103 physical sciencesLevitationNuclear Experiment0105 earth and related environmental sciencesWind tunnelAtmospheric Research
researchProduct

Active spike transmission in the neuron model with a winding threshold manifold

2012

International audience; We analyze spiking responses of excitable neuron model with a winding threshold manifold on a pulse stimulation. The model is stimulated with external pulse stimuli and can generate nonlinear integrate-and-fire and resonant responses typical for excitable neuronal cells (all-or-none). In addition we show that for certain parameter range there is a possibility to trigger a spiking sequence with a finite number of spikes (a spiking message) in the response on a short stimulus pulse. So active transformation of N incoming pulses to M (with M>N) outgoing spikes is possible. At the level of single neuron computations such property can provide an active "spike source" comp…

Cognitive Neuroscience[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][ NLIN.NLIN-CD ] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD]Threshold manifoldBiological neuron modelMachine learningcomputer.software_genreTopology01 natural sciences010305 fluids & plasmaslaw.inventionSpike encodingArtificial Intelligencelaw0103 physical sciences010306 general physicsSpike transmissionActive responseBifurcationMathematicsExcitabilityQuantitative Biology::Neurons and Cognitionbusiness.industry[SCCO.NEUR]Cognitive science/NeuroscienceDissipationComputer Science ApplicationsPulse (physics)[SPI.TRON]Engineering Sciences [physics]/Electronics[ SPI.TRON ] Engineering Sciences [physics]/ElectronicsNonlinear systemTransmission (telecommunications)Nonlinear dynamics[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][ SCCO.NEUR ] Cognitive science/NeuroscienceSpike (software development)Artificial intelligencebusinessManifold (fluid mechanics)computer
researchProduct

Flow properties and hydrodynamic interactions of rigid spherical microswimmers.

2017

We analyze a minimal model for a rigid spherical microswimmer and explore the consequences of its extended surface on the interplay between its self-propulsion and flow properties. The model is the first order representation of microswimmers, such as bacteria and algae, with rigid bodies and flexible propelling appendages. The flow field of such a microswimmer at finite distances significantly differs from that of a point-force (Stokeslet) dipole. For a suspension of microswimmers, we derive the grand mobility matrix that connects the motion of an individual swimmer to the active and passive forces and torques acting on all the swimmers. Our investigation of the mobility tensors reveals tha…

Collective behaviorStokesian dynamicsMovementFOS: Physical sciencesCondensed Matter - Soft Condensed MatterBacterial Physiological Phenomena01 natural sciencesQuantitative Biology::OtherModels Biological010305 fluids & plasmasQuantitative Biology::Cell Behavior0103 physical sciencesComputer SimulationPhysics - Biological Physics010306 general physicsSuspension (vehicle)Plant Physiological PhenomenaPhysicsPhysics::Biological PhysicsFluid Dynamics (physics.flu-dyn)EukaryotaPhysics - Fluid DynamicsFirst orderFlow fieldDipoleClassical mechanicsBiological Physics (physics.bio-ph)HydrodynamicsSoft Condensed Matter (cond-mat.soft)Flow propertiesPhysical review. E
researchProduct

Digital information receiver based on stochastic resonance

2003

International audience; An electronic receiver based on stochastic resonance is presented to rescue subthreshold modulated digital data. In real experiment, it is shown that a complete data restoration is achieved for both uniform and Gaussian white noise.

Complete data[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image ProcessingComputer scienceStochastic resonance[ PHYS.COND.CM-DS-NN ] Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn]Digital dataNonlinear signal processing[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing01 natural sciences010305 fluids & plasmas[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS][INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing0103 physical sciencesElectronic engineering[ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS][PHYS.COND.CM-DS-NN]Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn]stochastic resonance010306 general physicsEngineering (miscellaneous)Subthreshold conductionbusiness.industryApplied MathematicsWhite noise[SPI.TRON]Engineering Sciences [physics]/Electronics[ SPI.TRON ] Engineering Sciences [physics]/ElectronicsNonlinear systemModeling and SimulationNonlinear dynamicsTelecommunicationsbusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Complex singularities in KdV solutions

2016

In the small dispersion regime, the KdV solution exhibits rapid oscillations in its spatio-temporal dependence. We show that these oscillations are caused by the presence of complex singularities that approach the real axis. We give a numerical estimate of the asymptotic dynamics of the poles.

Complex singularities Padé approximation Borel and power series methods Dispersive shocksApplied MathematicsGeneral MathematicsNumerical analysis010102 general mathematicsMathematical analysis01 natural sciences010305 fluids & plasmasAsymptotic dynamics0103 physical sciencesPadé approximantGravitational singularity0101 mathematicsAlgebra over a fieldKorteweg–de Vries equationDispersion (water waves)Complex planeMathematics
researchProduct

Appearances of pseudo-bosons from Black-Scholes equation

2016

It is a well known fact that the Black-Scholes equation admits an alternative representation as a Schr\"odinger equation expressed in terms of a non self-adjoint hamiltonian. We show how {\em pseudo-bosons}, linear or not, naturally arise in this context, and how they can be used in the computation of the pricing kernel.

ComputationFOS: Physical sciencesStatistical and Nonlinear PhysicsBlack–Scholes modelMathematical Physics (math-ph)Mathematics::Spectral Theory01 natural sciences010305 fluids & plasmasSchrödinger equationsymbols.namesakeStochastic discount factor0103 physical sciencessymbols010306 general physicsHamiltonian (quantum mechanics)Settore MAT/07 - Fisica MatematicaMathematical PhysicsStatistical and Nonlinear PhysicBosonMathematical physicsMathematics
researchProduct

Noise correlations of the ultracold Fermi gas in an optical lattice

2008

In this paper we study the density noise correlations of the two component Fermi gas in optical lattices. Three different type of phases, the BCS-state (Bardeen, Cooper, and Schieffer), the FFLO-state (Fulde, Ferrel, Larkin, and Ovchinnikov), and BP (breach pair) state, are considered. We show how these states differ in their noise correlations. The noise correlations are calculated not only at zero temperature, but also at non-zero temperatures paying particular attention to how much the finite temperature effects might complicate the detection of different phases. Since one-dimensional systems have been shown to be very promising candidates to observe FFLO states, we apply our results als…

ComputationFOS: Physical sciencesradiation pressure01 natural sciences010305 fluids & plasmaslaser coolingfermion systemsLattice (order)Laser coolingQuantum mechanicsCondensed Matter::Superconductivity0103 physical sciencesoptical lattices010306 general physicsPhysicsCondensed Matter::Quantum GasesOptical latticeCondensed matter physicsBCS theoryBCS theoryAtomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterRadiation pressureQuasiparticleFermi gasOther Condensed Matter (cond-mat.other)
researchProduct

Shuttling-Based Trapped-Ion Quantum Information Processing

2020

Moving trapped-ion qubits in a microstructured array of radiofrequency traps offers a route toward realizing scalable quantum processing nodes. Establishing such nodes, providing sufficient functionality to represent a building block for emerging quantum technologies, e.g., a quantum computer or quantum repeater, remains a formidable technological challenge. In this review, the authors present a holistic view on such an architecture, including the relevant components, their characterization, and their impact on the overall system performance. The authors present a hardware architecture based on a uniform linear segmented multilayer trap, controlled by a custom-made fast multichannel arbitra…

Computer Networks and CommunicationsComputer scienceFOS: Physical sciences.Arbitrary waveform generator7. Clean energy01 natural sciences010305 fluids & plasmas//purl.org/becyt/ford/1 [https]0103 physical sciencesElectronic engineeringWaveformddc:530Electrical and Electronic EngineeringPhysical and Theoretical Chemistry010306 general physicsQuantum information scienceQuantum computerHardware architectureQuantum PhysicsControl reconfiguration//purl.org/becyt/ford/1.3 [https]Condensed Matter PhysicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsQuantum technologyComputational Theory and MathematicsQubitQuantum Physics (quant-ph)
researchProduct