Search results for "plasmoni"

showing 10 items of 135 documents

Plasmonic layers based on Au-nanoparticle-doped TiO2 for optoelectronics: structural and optical properties.

2013

The anti-reflective effect of dielectric coatings used in silicon solar cells has traditionally been the subject of intensive studies and practical applications. In recent years the interest has permanently grown in plasmonic layers based on metal nanoparticles, which are shown to increase light trapping in the underlying silicon. In the present work we have combined these two concepts by means of in situ synthesis of Au nanoparticles in a dielectric matrix (TiO2), which is commonly used as an anti-reflective coating in silicon solar cells, and added the third element: a 10–20% porosity in the matrix. The porosity is formed by means of a controllable wet etching by low concentration HF. As …

Materials scienceSiliconchemistry.chemical_elementBioengineering02 engineering and technologyDielectric010402 general chemistry01 natural sciences7. Clean energyGeneral Materials SciencePlasmonic solar cellElectrical and Electronic EngineeringSurface plasmon resonancePlasmonPlasmonic nanoparticlesbusiness.industryMechanical EngineeringSurface plasmonGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical scienceschemistryMechanics of MaterialsOptoelectronicssemiconductor thin films; surface plasmon resonance; anti-reflective coating0210 nano-technologybusinessRefractive indexNanotechnology
researchProduct

Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods.

2018

The self-assembled structures of atomically precise, ligand-protected noble metal nanoclusters leading to encapsulation of plasmonic gold nanorods (GNRs) is presented. Unlike highly sophisticated DNA nanotechnology, this strategically simple hydrogen bonding-directed self-assembly of nanoclusters leads to octahedral nanocrystals encapsulating GNRs. Specifically, the p-mercaptobenzoic acid (pMBA)-protected atomically precise silver nanocluster, Na4 [Ag44 (pMBA)30 ], and pMBA-functionalized GNRs were used. High-resolution transmission and scanning transmission electron tomographic reconstructions suggest that the geometry of the GNR surface is responsible for directing the assembly of silver …

Materials scienceta221Supramolecular chemistryNanotechnology02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesCatalysissupramolecular chemistryNanoclustersDNA nanotechnologysupramolekulaarinen kemiata116Plasmonatomically precise nanoclustersta114General ChemistryGeneral Medicineself-assembly021001 nanoscience & nanotechnologyhydrogen bonding0104 chemical sciencesNanocrystalplasmonic gold nanorodsengineeringNoble metalNanorodnanohiukkasetSelf-assembly0210 nano-technologyAngewandte Chemie (International ed. in English)
researchProduct

Colloidal Self-assembled Nanosphere Arrays for Plasmon-enhanced Light Trapping in Thin Film Silicon Solar Cells

2014

To realize high-efficiency thin-film silicon solar cells it is crucial to develop light-trapping methods that can increase absorption of the near- bandgap light in the silicon material. That can be achieved using the far-field scattering properties of metal nanoparticles (MNP) sustaining surface plasmons. The MNPs should be inserted in the back of the cell, embedded in the transparent conductive oxide (TCO) layer which separates the rear mirror from the silicon layers. In this way, a plasmonic back reflector (PBR) is constructed that can redirect light at angles away from the incidence direction and thereby increase its path length in the cell material. In this work, a novel technique is pr…

Light trappingMaterials scienceSiliconScatteringSurface plasmonColloidal Metal Nanoparticlechemistry.chemical_elementNanotechnologyThin film solar cellsPlasmonicSettore ING-INF/01 - ElettronicaEnergy (all)chemistryEnergy(all)Colloidal Metal NanoparticlesColloidal goldPlasmonicsMie theoryPlasmonic solar cellThin filmPlasmonTransparent conducting filmThin film solar cellEnergy Procedia
researchProduct

High-Density Plasmonic Nanoparticle Arrays Deposited on Nanoporous Anodic Alumina Templates for Optical Sensor Applications

2019

This study demonstrates a new, robust, and accessible deposition technique of metal nanoparticle arrays (NPAs), which uses nanoporous anodic alumina (NAA) as a template for capillary force-assisted convective colloid (40, 60, and 80 nm diameter Au) assembly. The NPA density and nanoparticle size can be independently tuned by the anodization conditions and colloid synthesis protocols. This enables production of non-touching variable-density NPAs with controllable gaps in the 20&ndash

Materials scienceGeneral Chemical EngineeringNanoparticle02 engineering and technology010402 general chemistry01 natural sciencesArticleplasmonicslcsh:Chemistrysymbols.namesakeColloidporous anodic aluminum oxideGeneral Materials ScienceAbsorption (electromagnetic radiation)nanoparticle arraysPlasmonbusiness.industryNanoporousAnodizingSERShemoglobin021001 nanoscience & nanotechnology0104 chemical scienceslcsh:QD1-999symbolsOptoelectronicscolloid deposition0210 nano-technologybusinessRefractive indexRaman scatteringNanomaterials
researchProduct

A tailor-made nucleoside-based colourimetric probe of formic acid

2014

A ratiometric, specific probe of formic acid has been developed. It is based on intermolecular nucleobase-pairing of inosine-capped plasmonic nanoparticles to form nucleoside channels, which are destabilised by the analyte.

AnalyteFormatesFormic acidCatalysischemistry.chemical_compoundmental disordersMaterials ChemistryOrganic chemistryRadiometryAcetic AcidPlasmonic nanoparticlesIntermolecular forceMetals and AlloysNucleosidesGeneral ChemistryCombinatorial chemistryGold CompoundsInosineSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistrySolventsCeramics and CompositesNanoparticlesColorimetryIndicators and ReagentsChloroformNucleosideChem. Commun.
researchProduct

Nonlinear photon-assisted tunneling transport in optical gap antennas.

2014

International audience; We introduce strongly coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical gap antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion involving d-band electrons and demonstrate that a simple two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.

PhotonMaterials sciencePhysics::OpticsBioengineering02 engineering and technologyElectron01 natural scienceselectromigration0103 physical sciencesGeneral Materials Science010306 general physicsoptical rectennasQuantum tunnellingPlasmonCommon emitterphoton-assisted tunneling[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryMechanical EngineeringGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsTransducerOptoelectronicsPlasmonicsOptical radiationAntenna (radio)0210 nano-technologybusinessNano letters
researchProduct

Surface plasmon propagation in metal nanowires

2012

Plasmonic circuitry is considered as a promising solution-effectivetechnology for miniaturizing and integrating the next generation ofoptical nano-devices. The realization of a practical plasmonic circuitry strongly depends on the complete understanding of the propagation properties of two key elements: surface plasmons and electrons. The critical part constituting the plasmonic circuitry is a waveguide which can sustain the two information-carriers simultaneously. Therefore, we present in this thesis the investigations on the propagation of surface plasmons and the co-propagation of surface plasmons and electrons in single crystalline metal nanowires. This thesis is therefore divided into …

Bias modulation[SPI.OTHER] Engineering Sciences [physics]/OtherWave vectorPlasmonic circuitryPropagation lengthElectrical failureSEM contaminationEffective indexPas de mot-clé en françaisLeaky radiation microscopyCo-propagation[PHYS.COND.CM-GEN] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Surface plasmonPentagonal single crystalline nanowireContacted nanowire
researchProduct

Plasmonic nanostructures for light trapping in thin-film solar cells

2019

Abstract The optical properties of localized surface plasmon resonances (LSPR) sustained by self-assembled silver nanoparticles are of great interest for enhancing light trapping in thin film photovoltaics. First, we report on a systematic investigation of the structural and the optical properties of silver nanostructures fabricated by a solid-state dewetting process on various substrates. Our study allows to identify fabrication conditions in which circular, uniformly spaced nanoparticles are obtainable. The optimized NPs are then integrated into plasmonic back reflector (PBR) structures. Second, we demonstrate a novel procedure, involving a combination of opto-electronic spectroscopic tec…

Materials scienceCondensed Matter Physic02 engineering and technologySettore ING-INF/01 - Elettronica7. Clean energy01 natural sciencesSilver nanoparticlelaw.inventionNanoparticlelawPhotovoltaics0103 physical sciencesSolar cellMechanics of MaterialGeneral Materials Sciencesubwavelength nanostructuresDewettingThin filmSurface plasmon resonancePlasmonThin film solar cell010302 applied physicsthin film solar cellsbusiness.industryMechanical EngineeringSelf-assemblyself-assemblyLocalized surface plasmon resonance021001 nanoscience & nanotechnologyCondensed Matter PhysicsphotovoltaicsMechanics of MaterialsOptoelectronicsPlasmonic-enhanced light trappingSubwavelength nanostructurenanoparticlesMaterials Science (all)0210 nano-technologybusinessPhotovoltaicLocalized surface plasmon
researchProduct

Enhancing carbon dots fluorescence via plasmonic resonance energy transfer

2022

Using plasmonic interactions to engineer optical properties at the nanoscale is an important challenge of current photonics. Here we establish a general strategy to enhance the orange emission of carbon dots by coupling them to gold nanoparticles through a polymeric spacer in solution. We exploit the overlap between the surface plasmon resonance of gold and the electronic transitions of carbon dots to achieve a fivefold increase of their fluorescence in the orange region, which is usually very weak. We demonstrate that this enhancement stems from an ultrafast resonance energy transfer from the coherent plasmonic state of the gold nanoantenna to the coupled carbon dot. Our study advances the…

Energy transferMechanics of MaterialsMechanical EngineeringSettore FIS/01 - Fisica SperimentaleGeneral Materials ScienceCarbon nanodotsPlasmonic nanoparticlesCondensed Matter PhysicsFluorescenceMaterials Research Bulletin
researchProduct

Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors

2014

The authors acknowledge Francesco Ruffino for the AFM measurements. This work was funded by the EU FP7 Marie Curie Action FP7-PEOPLE-2010-ITN through the PROPHET project (Grant No. 264687), the bilateral CNR/AVCR project "Photoresponse of nanostructures for advanced photovoltaic applications", the MIUR project Energetic (Grant no. PON02_00355_3391233) and by the Portuguese Science Foundation (FCT-MEC) through the Strategic Project PEst-C/CTM/LA0025/2013-14 and the research project PTDC/CTM-ENE/2514/2012. Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhance…

SiliconMaterials scienceConformal growthSiliconchemistry.chemical_elementPlasmon02 engineering and technologyFILMS01 natural sciences7. Clean energySilver A-Si:H solar cellSettore ING-INF/01 - ElettronicaLight scatteringOptics0103 physical sciencesPhotocurrentFabrication parameterPlasmonic solar cellThin filmSILICONPhotocurrent enhancementPlasmon010302 applied physicsPhotocurrentbusiness.industryLight scattering021001 nanoscience & nanotechnologySolar energyScattering effectAtomic and Molecular Physics and OpticschemistryDiffuse reflectionOptoelectronicsDiffuse reflectionThin-film silicon solar cells Silicon solar cells0210 nano-technologybusinessSilver nanoparticle (NPs)Optics Express
researchProduct