Search results for "plasmoni"
showing 10 items of 135 documents
Contrôle de nano-antennes optiques par une commande électrique : tuner plasmonique et transduction
2011
Optical nano-antennae are the new class of components to control light/matterinteraction at the nanoscale. These devices are operating in the visible to near infraredpart of the spectrum. The properties of these nano objects are controlled by theform, the size and the material.In the radio frequency domain, the tuner changes dynamically the operatingwavelength of the antenna. In this thesis work, we search to transfer this conceptto the nanoscale. The principle is to change the load impedance of the antenna, i.e.changing the optical index of the dielectric medium around the nano-object. Forthat we used anisotropic liquid cristal molecules. The value of the optical index iscontrolled by appl…
Fabrication and characterization of thermo-plasmonic routers for telecom applications
2013
The Dielectric Loaded Surface Plasmon Polariton Waveguides (DLSPPWs) have recently emerged as a possible solution to carry both optical and electrical signals on- chip. However, in the particular context of optical interconnects, advanced functionalities such as filtering, switching, and routing are required in order to replace in the future the equivalent electronic components which are too much power consumer and also to reduce their footprints. After presenting the interest and limitation of the leakage radiation microscopy method used all along this work, we show several active devices using thermo-sensitive polymers as the dielectric load driven electrically by Joule heating. Then we d…
A mid-IR Plasmonic Graphene Nanorectenna-based Energy Harvester to Power IoT Sensors
2022
In this paper, the design of a graphene arrow- bowtie nanoantenna mid-IR energy-harvester to power IOT wireless sensor is presented. For the first time, a sensitivity analysis of the mid-IR nanoantenna resonant frequencies in terms of different graphene number of sheets and chemical potential (μCP) without substrate and on a two-layer substrate composed of SiO2 and Si, is carried out. The obtained simulation results by 3D CST 2020 are useful to design an efficient infrared nanorectenna, composed of the nanoantenna and a rectifying MIM diode inside the gap. The analysis of the complete energy-harvester (EH), composed of an NxM nanorectenna array, a low-pass filter, and a DC-DC converter, is …
Metallic Nanostructures Based on DNA Nanoshapes
2016
Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbit…
Custom-shaped metal nanostructures based on DNA origami silhouettes.
2015
The DNA origami technique provides an intriguing possibility to develop customized nanostructures for various bionanotechnological purposes. One target is to create tailored bottom-up-based plasmonic devices and metamaterials based on DNA metallization or controlled attachment of nanoparticles to the DNA designs. In this article, we demonstrate an alternative approach: DNA origami nanoshapes can be utilized in creating accurate, uniform and entirely metallic (e.g. gold, silver and copper) nanostructures on silicon substrates. The technique is based on developing silhouettes of the origamis in the grown silicon dioxide layer, and subsequently using this layer as a mask for further patterning…
Active plasmonics in WDM traffic switching applications
2012
With metal stripes being intrinsic components of plasmonic waveguides, plasmonics provides a "naturally" energy-efficient platform for merging broadband optical links with intelligent electronic processing, instigating a great promise for low-power and small-footprint active functional circuitry. The first active Dielectric-Loaded Surface Plasmon Polariton (DLSPP) thermo-optic (TO) switches with successful performance in single-channel 10 Gb/s data traffic environments have led the inroad towards bringing low-power active plasmonics in practical traffic applications. In this article, we introduce active plasmonics into Wavelength Division Multiplexed (WDM) switching applications, using the …
Optical Plasmonic Nano-Antennas Array for Energy Harvesting Applications
2019
Optical nanoantennas have been of great interest recently due to their ability to support a highly efficient, localized surface plasmon resonance and produce significantly enhanced and highly confined electromagnetic fields. The Yagi nanoantenna, an optical analog of the well-established radiofrequency Yagi antenna, stands out by its efficient unidirectional light emission and enhancement. In this paper, an investigation on a novel optical plasmonic nanoantennas array for energy harvesting application is proposed. The study of a novel Yagi nanorectennas array, by optimizing its geometrical parameters, is reported. All the simulations are carried out by using the CST Studio Suite 2018 softwa…
Evaluating plasmonic transport in current-carrying silver nanowires
2013
cited By 1; International audience; Plasmonics is an emerging technology capable of simultaneously transporting a plasmonic signal and an electronic signal on the same information support1,2,3. In this context, metal nanowires are especially desirable for realizing dense routing networks4. A prerequisite to operate such shared nanowire-based platform relies on our ability to electrically contact individual metal nanowires and efficiently excite surface plasmon polaritons5 in this information support. In this article, we describe a protocol to bring electrical terminals to chemically-synthesized silver nanowires6 randomly distributed on a glass substrate7. The positions of the nanowire ends …
Ultrastrong Coupling of a Single Molecule to a Plasmonic Nanocavity: A First-Principles Study
2022
| openaire: EC/H2020/838996/EU//RealNanoPlasmon Funding Information: We acknowledge financial support from the Swedish Research Council (VR Miljö, Grant No: 2016-06059), the Knut and Alice Wallenberg Foundation (Grant No: 2019.0140), the Polish National Science Center (projects 2019/34/E/ST3/00359 and 2019/35/B/ST5/02477). T.P.R. acknowledges support from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 838996 and support from the Academy of Finland under the Grant No. 332429. T.J.A. acknowledges support from the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H…
Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application
2016
AbstractA combination of photocurrent and photothermal spectroscopic techniques is applied to experimentally quantify the useful and parasitic absorption of light in thin hydrogenated microcrystalline silicon (μc-Si:H) films incorporating optimized metal nanoparticle arrays, located at the rear surface, for improved light trapping via resonant plasmonic scattering. The photothermal technique accounts for the total absorptance and the photocurrent signal accounts only for the photons absorbed in the μc-Si:H layer (useful absorptance); therefore, the method allows for independent quantification of the useful and parasitic absorptance of the plasmonic (or any other) light trapping structure. W…