Search results for "polariton"

showing 10 items of 162 documents

Power monitoring in dielectric-loaded surface plasmon-polariton waveguides

2011

We report on propagating mode power monitoring in dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) by measuring the resistance of gold stripes supporting the DLSPPW mode propagation. Inevitable absorption of the DLSPPW mode in metal causes an increase in the stripe temperature and, thereby, in its resistance whose variations are monitored with an external Wheatstone bridge being accurately balanced in the absence of radiation in a waveguide. The investigated waveguide configuration consists of a 1-µm-thick and 10-µm-wide polymer ridges tapered laterally to a 1-µm-wide ridge placed on a 50-nm-thin and 4-µm-wide gold stripe, all supported by a magnesium fluoride substrate. Usi…

Magnesium fluorideMaterials scienceWheatstone bridgebusiness.industrySurface plasmonPhotonic integrated circuitBiasingSurface plasmon polaritonAtomic and Molecular Physics and Opticslaw.inventionchemistry.chemical_compoundOpticschemistrylawbusinessAbsorption (electromagnetic radiation)Waveguide
researchProduct

Fiber-coupled dielectric-loaded plasmonic waveguides.

2010

Fiber in- and out-coupling of radiation guided by dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) is realized using intermediate tapered dielectric waveguides. The waveguide structures fabricated by large-scale UV-lithography consist of 1-microm-thick polymer ridges tapered from 10-microm-wide ridges deposited directly on a magnesium fluoride substrate to 1-microm-wide ridges placed on a 50-nm-thick and 100-microm-wide gold stripe. Using fiber-to-fiber transmission measurements at telecom wavelengths, the performance of straight and bent DLSPPWs is characterized demonstrating the overall insertion loss below 24 dB, half of which is attributed to the DLSPPW loss of propagati…

Magnesium fluorideMaterials sciencebusiness.industrySurface plasmonPhotonic integrated circuitSubstrate (electronics)DielectricSurface plasmon polaritonAtomic and Molecular Physics and Opticslaw.inventionchemistry.chemical_compoundOpticschemistrylawInsertion lossbusinessWaveguideOptics express
researchProduct

Introducing coherent time control to cavity magnon-polariton modes

2020

By connecting light to magnetism, cavity-magnon-polaritons (CMPs) can build links from quantum computation to spintronics. As a consequence, CMP-based information processing devices have thrived over the last five years, but almost exclusively been investigated with single-tone spectroscopy. However, universal computing applications will require a dynamic control of the CMP on demand and within nanoseconds. In this work, we perform fast manipulations of the different CMP modes with independent but coherent pulses to the cavity and magnon system. We change the state of the CMP from the energy exchanging beat mode to its normal modes and further demonstrate two fundamental examples of coheren…

Magnetism530 PhysicsGeneral Physics and AstronomyFOS: Physical sciencesPhysics::Opticslcsh:AstrophysicsTopology01 natural sciences010309 opticsNormal mode0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)lcsh:QB460-466Polaritonddc:530010306 general physicsQuantum computerPhysicsQuantum networkSpintronicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter::OtherPhysicsMagnonNanosecond530 Physiklcsh:QC1-999lcsh:PhysicsCommunications Physics
researchProduct

Photonic band gaps in highly ionic medium: CuCl, CuBr, CuI

2003

Abstract Using the transfer-matrix-method, we have studied the propagation of electromagnetic waves through two-dimensional (2D) and three-dimensional (3D) dispersive photonic band gap (PBG) structures constructed from copper halides materials, especially from CuCl compounds. A special attention has been paid to the effect of the polariton gap on the PBG properties. This study reveals that “Twin gaps” and “Twin brothers” concepts and the flattened bands phenomena in both polarizations and for both structures (i.e. 2D and 3D) are all consequences of the strong photon–phonon coupling, particularly near the long wave length transverse optical phonon frequency. Furthermore, results for comparis…

Materials scienceCondensed matter physicsBand gapWave propagationPhononTransfer-matrix method (optics)Physics::OpticsCondensed Matter PhysicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsWavelengthPolaritonCondensed Matter::Strongly Correlated ElectronsElectronic band structurePhotonic crystalInfrared Physics & Technology
researchProduct

Ultrastrong Coupling of Plasmons and Excitons in a Nanoshell

2014

The strong coupling regime of hybrid plasmonic-molecular systems is a subject of great interest for its potential to control and engineer light-matter interactions at the nanoscale. Recently, the so-called ultrastrong coupling regime, which is achieved when the light-matter coupling rate reaches a considerable fraction of the emitter transition frequency, has been realized in semiconductor and superconducting systems and in organic molecules embedded in planar microcavities or coupled to surface plasmons. Here we explore the possibility to achieve this regime of light-matter interaction at nanoscale dimensions. We demonstrate by accurate scattering calculations that this regime can be reach…

Materials scienceCondensed matter physicsbusiness.industryExcitonSurface plasmonGeneral EngineeringPhysics::OpticsGeneral Physics and AstronomyNanoshellCoupling (physics)SemiconductorPolaritonGeneral Materials SciencebusinessPlasmonLocalized surface plasmon
researchProduct

Plasmonic Waveguides Co-Integrated with Si3N4 Waveguide Platform for Integrated Biosensors

2019

Integration of plasmonic waveguides with low-loss photonic platforms have attracted research efforts as the means to benefit from the extra-ordinary features of plasmonics while enhancing the functional portfolio of Photonic Integrated Circuits (PICs). In this work, we review a technology platform that integrates water cladded plasmonic waveguides integrated in a low-loss Si 3 N 4 photonic platform, targeting biosensing applications. Results obtained experimentally and numerically will be presented with respect to propagation losses, interface coupling loss and accumulated phase change per unit length, showing how Surface Plasmon Polariton (SPP) waveguides can be effectively combined with p…

Materials scienceCoupling lossbusiness.industryPhotonic integrated circuitPhysics::OpticsSurface plasmon polaritonlaw.inventionPlasmonic waveguidelawOptoelectronicsPhotonicsbusinessBiosensorWaveguidePlasmon2019 21st International Conference on Transparent Optical Networks (ICTON) Angers France
researchProduct

Silicon-loaded surface plasmon polariton waveguides for nanosecond thermo-optical switching

2014

A MHz-bandwidth thermo-optical (TO) plasmonic switch operating at telecommunication wavelengths and based on a hybrid solid-state silicon-loaded surface plasmon polariton waveguide design is demonstrated numerically. The nanosecond (ns) TO response of the switch is due to the high thermal conductivities of the employed materials and we demonstrate specifically a 10 dB extinction ratio in the time-dependent switch transmission which features a pulsed 1 ns rise time followed by a 25 ns fall time when the switch is photo-thermally activated by a ns pulse at 532 nm wavelength.

Materials scienceExtinction ratiobusiness.industrySurface plasmonNanosecondOptical switchSurface plasmon polaritonAtomic and Molecular Physics and OpticsOpticsFall timeRise timeOptoelectronicsbusinessPlasmon
researchProduct

Momentum Distribution of Electrons Emitted from Resonantly Excited Individual Gold Nanorods.

2017

Electron emission by femtosecond laser pulses from individual Au nanorods is studied with a time-of-flight momentum resolving photoemission electron microscope (ToF k-PEEM). The Au nanorods adhere to a transparent indium–tin oxide substrate, allowing for illumination from the rear side at normal incidence. Localized plasmon polaritons are resonantly excited at 800 nm with 100 fs long pulses. The momentum distribution of emitted electrons reveals two distinct emission mechanisms: a coherent multiphoton photoemission process from the optically heated electron gas leads to an isotropic emission distribution. In contrast, an additional emission process resulting from the optical field enhanceme…

Materials scienceMechanical EngineeringPhysics::OpticsBioengineering02 engineering and technologyGeneral ChemistryElectron021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaser01 natural scienceslaw.inventionCondensed Matter::Materials SciencePhotoemission electron microscopylawExcited state0103 physical sciencesFemtosecondPolaritonGeneral Materials ScienceNanorodAtomic physics010306 general physics0210 nano-technologyPlasmonNano letters
researchProduct

Wave-vector analysis of plasmon-assisted distributed nonlinear photoluminescence along Au nanowires

2020

We report a quantitative analysis of the wavevector diagram emitted by nonlinear photoluminescence generated by a tightly focused pulsed laser beam and distributed along Au nanowire via the mediation of surface plasmon polaritions. The nonlinear photoluminescence is locally excited at key locations along the nanowire in order to understand the different contributions constituting the emission pattern measured in a conjugate Fourier plane of the microscope. Polarization-resolved measurements reveal that the nanowire preferentially emits nonlinear photoluminescence polarized transverse to the long axis at close to the detection limit wavevectors with a small azimuthal spread in comparison to …

Materials scienceMicroscopePhotoluminescenceNanowireFOS: Physical sciencesPhysics::Optics02 engineering and technology01 natural sciencesMolecular physicslaw.inventionCondensed Matter::Materials Sciencelaw0103 physical sciencesWave vector[NLIN]Nonlinear Sciences [physics][PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physicsPlasmonScattering021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSurface plasmon polariton3. Good healthTransverse plane0210 nano-technologyOptics (physics.optics)Physics - Optics
researchProduct

Strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye

2011

We demonstrate a strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye molecules. Dispersion curves for surface plasmon polaritons on samples with a thin layer of silver covered with Sulforhodamine 101 molecules embedded in SU-8 polymer are obtained experimentally by reflectometry measurements and compared to the dispersion of samples without molecules. Clear Rabi splittings, with energies up to 360 and 190 meV, are observed at the positions of the dye absorption maxima. The split energies are dependent on the number of Sulforhodamine 101 molecules involved in the coupling process. Transfer matrix and coupled oscillator methods are used to model the studied multilaye…

Materials scienceNanochemistryPhysics::Opticsdispersion curve02 engineering and technology01 natural sciencesMolecular physicschemistry.chemical_compoundOpticsMaterials Science(all)Dispersion relationstrong coupling0103 physical sciencesDispersion (optics)General Materials Science010306 general physicsReflectometryRabi splittingNano Expressbusiness.industrySulforhodamine 101Surface plasmon021001 nanoscience & nanotechnologySulforhodamine 101Condensed Matter PhysicsSurface plasmon polariton3. Good healthchemistrysurface plasmon polariton0210 nano-technologybusinessLocalized surface plasmonNanoscale Research Letters
researchProduct