Search results for "polaron"
showing 9 items of 79 documents
Possibility of unconventional superconductivity of SrTiO3−δ
2003
Abstract SrTiO3−δ can show metallic behavior and superconductivity at T It is demonstrated that by variation of the annealing temperature in vacuum the transport properties of SrTiO3−δ can be tuned continuously from semiconducting to metallic. We present measurements of the upper critical field Bc2(T) which show near Tc a positive curvature. This unusual temperature dependence is consistent with a model of weakly interacting charged bosons which condense in the superconducting state (local pairing). However, measurements of current–voltage curves reveal only small critical currents of our samples. This observation is discussed in the framework of doping inhomogeneities.
Computer Modeling of Defects and Surfaces in Advanced Perovskite Ferroelectrics
2000
The (110) surface relaxations are calculated for SrTiO3 and BaTiO3 perovskites. The positions of atoms in 16 near-surface layers placed atop a slab of rigid ions are optimized. Strong surface rumpling and surface-induced dipole moments perpendicular to the surface are predicted for both the O-terminated and Ti-terminated surfaces. Calculated optical properties of basic point defects – F-type centres and hole polarons – in KNbO3 are used for the interpretation of available experimental data.
Magnetoresistivity and crystal structure of epitaxial La0.67Ca0.33MnO3 films
1998
Abstract We investigated thin-film growth of doped manganites by sputter deposition on SrTiO 3 (1 0 0), MgO (1 0 0) and r -plane Al 2 O 3 (1 0 1¯2) substrates and found an in-plane-oriented growth. The unit cell of the films showed distortions from the simple cubic perovskite structure, represented by a tetragonal unit cell with a′ = b′ = √2 a ; c′ = 2 a . By scanning electron microscopy we investigated the growth morphology of the films. We determined the magnetotransport properties above and below room temperature. Transport at high temperatures is best described by polaron hopping.
Characterization of defect density states in MoOx for c-Si solar cell applications
Layers of MoOx have been deposited by thermal evaporation followed by post-deposition annealing (PDA). The density of states (DOS) distributions of the MoOx films were extracted deconvoluting the absorption spectra, measured by a phothermal deflection spectroscopy setup, including the small polaron contribution. Results revealed a sub-band defect distribution centered 1.1 eV below the conduction band; the amplitude of this distribution was found to increase with PDA temperature and film thickness.
Tuning the Photoresponse of Nano‐Heterojunction: Pressure‐Induced Inverse Photoconductance in Functionalized WO 3 Nanocuboids
2019
S.R. and S.S. contributed equally to this work. This work was mainly supported by the Natural Science Foundation of China (Grant No. 11874076), National Science Associated Funding (NSAF, Grant No. U1530402), and Science Challenging Program (Grant No. TZ2016001). D.E. thanks the financial support from Spanish MINECO under Grant No. MAT2016-75586-C4-1-P and from Generalitat Valenciana under Grant Prometeo/2018/123, EFIMAT. The X-ray diffraction measurements were performed at the BL15U1 station, Shanghai Synchrotron Radiation Facility (SSRF) in China. The HP XAS measurements were performed at 20 ID-C, APS, ANL. APS is supported by DOE-BES, under contract no. DE-AC02-06CH11357. The authors grat…
Many-body Green's function theory for electron-phonon interactions: ground state properties of the Holstein dimer
2015
We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron-phonon interaction is sufficiently strong whereas at smaller interactions only a single solution is found. The additional solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomogeneous electron de…
Density of States evaluation of Molybdenum Oxide for c-Si solar cell
Silicon-based heterojunction technology (HJT) is one of the most promising candidates for high performance and low cost solar cells with world-record efficiency close to 27% in IBC architecture. The HJT exploits the excellent passivation properties of hydrogenated amorphous silicon (a-Si:H); although, the use of doped a-Si:H has drawbacks such as parasitic absorption and low-thermal budget to cope with back-end metallization. Replacing the p-type a-Si:H with molybdenum oxide (MoOx) is a viable alternative. Optimizing this hole-selective layer is needed; however information on the defect density of states (DOS), linked to oxygen vacancies is still lacking.
Exotic Spin-Orbital Physics in Hybrid Oxides
2016
We compare the effective spin-orbital super\-exchange triggered by magnetic $3d$ impurities with $d^3$ and $d^2$ configurations and either no orbital degree of freedom (orbital dilution) or hole replacing a doublon (charge dilution) in a $4d^4$ Mott insulator with $S=1$ spins. Impurities causing orbital dilution act either as spin defects decoupled from the surrounding ions, or generate orbital polarons along $d^3$-$d^4$ hybrid bonds. The exchange on these bonds determines which orbital is occupied by a doublon on the host site. In case of charge dilution by $3d^2$ impurities additional $\propto T_i^+T_j^+$ terms arise which enhance orbital fluctuations. We show that such terms may radicall…