Search results for "polyesters"

showing 10 items of 117 documents

Core-shell PLA/Kef hybrid scaffolds for skin tissue engineering applications prepared by direct kefiran coating on PLA electrospun fibers optimized v…

2021

Abstract Over the recent years, there is a growing interest in electrospun hybrid scaffolds composed of synthetic and natural polymers that can support cell attachment and proliferation. In this work, the physical and biological properties of polylactic acid (PLA) electrospun mats coated with kefiran (Kef) were evaluated. Gravimetric, spectroscopic (FTIR-ATR) and morphological investigations via scanning electron microscopy confirmed the effective formation of a thin kefiran layer wrapped on the PLA fibers with an easy-tunable thickness. Air plasma pre-treatment carried out on PLA (P-PLA) affected both the morphology and the crystallinity of Kef coating as confirmed by differential scanning…

Materials sciencePolyestersBioengineeringmacromolecular substances02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesPolylactic acidBiomaterialschemistry.chemical_compoundCrystallinityDifferential scanning calorimetrystomatognathic systemPolylactic acidTissue engineeringCoatingPolysaccharidesCold plasma treatmentElectrospinningTissue EngineeringTissue Scaffoldstechnology industry and agricultureKefiranequipment and supplies021001 nanoscience & nanotechnologyElectrospinning0104 chemical sciencesPolyesterchemistryChemical engineeringMechanics of MaterialsKefiranengineeringlipids (amino acids peptides and proteins)Fibroblast cells0210 nano-technology
researchProduct

Effect of hydroxyapatite concentration and size on morpho-mechanical properties of PLA-based randomly oriented and aligned electrospun nanofibrous ma…

2019

The growing demand for nanofibrous biocomposites able to provide peculiar properties requires systematic investigations of processing-structure-property relationships. Understanding the morpho-mechanical properties of an electrospun scaffold as a function of the filler features and mat microstructure can aid in designing these systems. In this work, the reinforcing effect of micrometric and nanometric hydroxyapatite particles in polylactic acid-based electrospun scaffold presenting random and aligned fibers orientation, was evaluated. The particles incorporation was investigated trough Fourier transform infrared spectroscopy in attenuated total reflectance. The morphology of the nanofibers …

Materials sciencePolyestersNanofibersBiomedical EngineeringBiocompatible Materials02 engineering and technologyBone tissuePolylactic acidHydroxyapatitePre-osteoblatic cellsBiomaterialsMice03 medical and health scienceschemistry.chemical_compoundCrystallinity0302 clinical medicineElectricityPolylactic acidTensile StrengthUltimate tensile strengthmedicineAnimalsParticle SizeComposite materialFourier transform infrared spectroscopyCell ProliferationMechanical PhenomenaElectrospinningGuided Tissue RegenerationViscositySettore ING-IND/34 - Bioingegneria Industriale3T3 Cells030206 dentistry021001 nanoscience & nanotechnologyElectrospinningDurapatitemedicine.anatomical_structurechemistryMechanics of MaterialsAttenuated total reflectionNanofiberAligned fibers0210 nano-technology
researchProduct

HPMA-based block copolymers promote differential drug delivery kinetics for hydrophobic and amphiphilic molecules.

2015

Abstract We describe a method how polymeric nanoparticles stabilized with (2-hydroxypropyl)methacrylamide (HPMA)-based block copolymers are used as drug delivery systems for a fast release of hydrophobic and a controlled release of an amphiphilic molecule. The versatile method of the miniemulsion solvent-evaporation technique was used to prepare polystyrene (PS) as well as poly-d/l-lactide (PDLLA) nanoparticles. Covalently bound or physically adsorbed fluorescent dyes labeled the particles’ core and their block copolymer corona. Confocal laser scanning microscopy (CLSM) in combination with flow cytometry measurements were applied to demonstrate the burst release of a fluorescent hydrophobic…

Materials sciencePolymersPolyestersBiomedical EngineeringNanoparticleFluorescent Antibody TechniqueNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesBiochemistryBiomaterialschemistry.chemical_compoundSurface-Active AgentsDrug Delivery SystemsAmphiphileCopolymerMethacrylamideHumansMolecular BiologyDrug CarriersGeneral MedicineLipid Droplets021001 nanoscience & nanotechnologyControlled release0104 chemical sciencesMiniemulsionDrug LiberationKineticschemistryDrug deliveryBiophysicsMethacrylatesNanoparticlesPolystyrenesNanocarriers0210 nano-technologyHydrophobic and Hydrophilic InteractionsBiotechnologyHeLa CellsActa biomaterialia
researchProduct

Polymeric scaffolds prepared via thermally induced phase separation: Tuning of structure and morphology

2008

Scaffolds suitable for tissue engineering applications like dermal reconstruction were prepared by Thermally Induced Phase Separation (TIPS) starting from a ternary solution PLLA/dioxane/water. The experimental protocol consisted of three consecutive steps, a first quench from the homogeneous solution to an appropriate demixing temperature (within the metastable region), a holding stage for a given residence time, and a final quench from the demixing temperature to a low temperature (within the unstable region). A large variety of morphologies, in terms of average pore size and interconnection, were obtained upon modifying the demixing time and temperature, owing to the interplay of nucleat…

Materials sciencePolymersPolyestersBiomedical EngineeringNucleationBiocompatible MaterialsResidence time (fluid dynamics)DioxanesBiomaterialsMetastabilityMaterials TestingLactic Acidchemistry.chemical_classificationTissue EngineeringTemperatureMetals and AlloysWaterPolymerAmorphous solidPolyesterCrystallographyChemical engineeringchemistryCeramics and CompositesDegradation (geology)Ternary operationTissue engineering TIPS PLA Phase separation Morphology StructureJournal of Biomedical Materials Research Part A
researchProduct

Evaluation of mechanical and morphologic features of PLLA membranes as supports for perfusion cells culture systems

2015

Abstract Porous biodegradable PLLA membranes, which can be used as supports for perfusion cell culture systems were designed, developed and characterized. PLLA membranes were prepared via diffusion induced phase separation (DIPS). A glass slab was coated with a binary PLLA–dioxane solution (8 wt.% PLLA) via dip coating, then pool immersed in two subsequent coagulation baths, and finally dried in a humidity-controlled environment. Surface and mechanical properties were evaluated by measuring pore size, porosity via scanning electron microscopy, storage modulus, loss modulus and loss angle by using a dynamic mechanical analysis (DMA). Cell adhesion assays on different membrane surfaces were a…

Materials scienceScanning electron microscopePolyestersCell Culture TechniquesPolyesterBioengineeringNanotechnology02 engineering and technologyCondensed Matter Physic010402 general chemistry01 natural sciencesDip-coatingCell LineBiomaterialsElastic ModulusTensile StrengthDynamic modulusHumansMechanics of MaterialPorosityElastic modulusMechanical PhenomenaElastic ModuluEpithelial CellMechanical Engineeringtechnology industry and agricultureTemperatureCell adhesionEpithelial CellsMembranes ArtificialDynamic mechanical analysis021001 nanoscience & nanotechnology0104 chemical sciencesPLLA membranePolyesterPerfusionMembraneChemical engineeringMechanics of MaterialsMaterials Science (all)Stress Mechanical0210 nano-technologyMechanical propertieCell Culture TechniquePorosityHuman
researchProduct

Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings.

2010

This paper presents a comprehensive performance study of polylactic acid (PLA) biocomposites, obtained by solvent casting, containing a novel silver-based antimicrobial layered silicate additive for use in active food packaging applications. The silver-based nanoclay showed strong antimicrobial activity against Gram-negative Salmonella spp. Despite the fact that no exfoliation of the silver-based nanoclay in PLA was observed, as suggested by transmission electron microscopy (TEM) and wide angle X-ray scattering (WAXS) experiments, the additive dispersed nicely throughout the PLA matrix to a nanoscale, yielding nanobiocomposites. The films were highly transparent with enhanced water barrier …

Materials scienceTime FactorsPolymersHealth Toxicology and MutagenesisPolyestersMetal NanoparticlesNanotechnologyFood ContaminationMicrobial Sensitivity Testsengineering.materialToxicologyPermeabilitychemistry.chemical_compoundPolylactic acidCoatingMicroscopy Electron TransmissionSalmonellaFood PreservationNanotechnologyLactic Acidchemistry.chemical_classificationCalorimetry Differential ScanningSilicatesPublic Health Environmental and Occupational HealthFood preservationFood PackagingTemperatureSilver CompoundsGeneral ChemistryGeneral MedicinePolymerElectrochemical TechniquesAntimicrobialExfoliation jointAnti-Bacterial AgentsFood packagingSteamchemistryChemical engineeringengineeringFood MicrobiologyFood qualityFood ScienceFood additivescontaminants. Part A, Chemistry, analysis, control, exposurerisk assessment
researchProduct

Polycaprolactone/gelatin-based scaffolds with tailored performance: in vitro and in vivo validation

2019

Abstract Nanofibrous scaffolds composed of polycaprolactone (PCL) and gelatin (Ge) were obtained through a hydrolytic assisted electrospinning process. The PCL-to-Ge proportion (100/0 to 20/80), as well as the dissolution time (24, 48, 72, 96, 120 h) into a 1:1 formic/acetic acid solvent before electrospinning were modified to obtain the different samples. A strong influence of these factors on the physicochemical properties of the scaffolds was observed. Higher Ge percentage reduced crystallinity, allowed a uniform morphology and increased water contact angle. The increase in the dissolution time considerably reduced the molar mass and, subsequently, fibre diameter and crystallinity were a…

Materials sciencefood.ingredientBiocompatibilityPolyestersMyocardial InfarctionNanofibersBioengineering02 engineering and technology010402 general chemistry01 natural sciencesGelatinCell LineScaffoldBiomaterialsContact angleMiceCrystallinitychemistry.chemical_compoundfoodMaterials TestingCell AdhesionAnimalsHumansTailoredRats WistarMaterialsDissolutionCells CulturedCell ProliferationMolar massTissue EngineeringTissue ScaffoldsMyocardiumin vitro021001 nanoscience & nanotechnologyElectrospinningRats0104 chemical sciencesMice Inbred C57BLDisease Models Animalin vivochemistryChemical engineeringMechanics of MaterialsPolycaprolactoneLeukocytes MononuclearGelatinBiocompatibility0210 nano-technologyMaterials Science and Engineering: C
researchProduct

Incorporation of an antibiotic in poly(lactic acid) and polypropylene by melt processing

2016

Purpose In this work an antibiotic, ciprofloxacin (CFX), was incorporated into 2 different polymeric matrices, poly(lactic acid) (PLA) and polypropylene (PP), to provide them with antimicrobial properties. The influence of CFX content on release kinetics and on antimicrobial and mechanical properties was evaluated. Methods CFX was incorporated into both the polymers by melt mixing. Results The effect of CFX incorporation was found to strongly depend on which polymer matrix was used. In particular, the antimicrobial tests revealed that PLA samples containing CFX produced no inhibition zone and only a slight antibacterial activity was observed when the highest concentration of CFX was added t…

Materials sciencemedicine.drug_classPolyestersAntibioticsPolypropylene (PP)BiophysicsBiomedical EngineeringBioengineering02 engineering and technologyPolypropylenes010402 general chemistry01 natural sciencesPoly(lactic acid) (PLA)Biomaterialschemistry.chemical_compoundDegradationCiprofloxacinPolymer chemistrymedicinePolypropylenePolymeric matrixGeneral Medicine021001 nanoscience & nanotechnologyAntimicrobialAnti-Bacterial Agents0104 chemical sciencesLactic acidCiprofloxacinAntimicrobial propertiechemistryBiophysicDelayed-Action Preparations0210 nano-technologyNuclear chemistrymedicine.drug
researchProduct

Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on star…

2009

In the present study we assessed the potential of human outgrowth endothelial cells (OEC), a subpopulation within endothelial progenitor cell cultures, to support the vascularization of a complex tissue engineered construct for bone. OEC cultured on starch polycaprolactone fiber meshes (SPCL) in monoculture retained their endothelial functionality and responded to angiogenic stimulation by VEGF (vascular endothelial growth factor) in fibrin gel-assays in vitro. Co-culture of OEC with human primary osteoblasts (pOB) on SPCL, induced an angiogenic activation of OEC towards microvessel-like structures achieved without additional supplementation with angiogenic growth factors. Effects of co-cul…

Mice SCID02 engineering and technologyBone tissueBone tissue engineeringNeovascularizationMicechemistry.chemical_compoundSubcutaneous TissueImplants ExperimentalTissue engineeringOsteogenesisEndothelial progenitor cells0303 health sciencesIn vivo testTissue ScaffoldsbiologyStarch021001 nanoscience & nanotechnology3. Good healthCell biologyVascular endothelial growth factorDrug CombinationsPhenotypemedicine.anatomical_structureMechanics of MaterialsProteoglycansCollagenmedicine.symptom0210 nano-technologyPolyestersBiophysicsNeovascularization PhysiologicBioengineeringEndothelial progenitor cellBone and BonesFibrinBiomaterials03 medical and health sciencesIn vivomedicineAnimalsHumansCell Proliferation030304 developmental biologyMatrigelScience & TechnologyOsteoblastsTissue EngineeringVascularizationEndothelial CellsCoculture TechniquesGene Expression RegulationchemistryCeramics and Compositesbiology.proteinLamininBiomedical engineeringBiomaterials
researchProduct

Reactive blending of a functionalized polyethylene with a semiflexible liquid crystalline copolyester

1996

Reactive blends (50/50 w/w) of a low molar mass polyethylene containing free carboxylic groups (PEox) and a semiflexible liquid crystalline polyester (SBH 1 : 1 : 2, by Eniricerche) have been prepared at 240 degrees C in a Brabender mixer, in the presence of Ti(OBu)(4) catalyst, for different mixing times (15, 60, and 120 min). In order to prove the formation of a PE-g-SBH copolymer, the blends have been fractionated by successive extractions with boiling toluene and xylene. The soluble fractions and the residues have been analyzed by Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG and DTG), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM)…

Molar massPolymers and PlasticsCOMPATIBILIZATIONChemistryGeneral ChemistryPolyethyleneCopolyesterTHERMOPLASTIC COMPOSITESSurfaces Coatings and FilmsPolyesterThermogravimetrychemistry.chemical_compoundDifferential scanning calorimetryPOLYMER BLENDSSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiChemical engineeringPolymer chemistryTRANSESTERIFICATIONMaterials ChemistryMORPHOLOGYThermal stabilityFourier transform infrared spectroscopyPOLYPROPYLENEPOLYESTERS
researchProduct