Search results for "polynomit"

showing 10 items of 11 documents

Polynomimatriisit

2014

Tämän tutkielman sisältö voidaan karkeasti jakaa kahteen osaan. Ensimmäisessä on tarkoituksena tarkastella polynomimatriiseja ja erityisesti osoittaa toimiviksi kaksi niiden muokkaamiseen soveltuvaa algoritmia. Algoritmit toimivat osittain samalla idealla kuin lineaarialgebran perusteista tuttu Gaussin ja Jordanin menetelmä. Polynomit tuovat menetelmiin kuitenkin uutta sisältöä erityisesti jaollisuusominaisuuksiensa vuoksi. Tarkasteltavat matriisit ovat aina neliömatriiseja, ja polynomien kerroinkunnan karakteristika oletetaan nollaksi. Ensimmäinen algoritmi osoittaa, että Gaussin menetelmän polynomimatriiseille yleistetyillä rivioperaatioilla voidaan aina muokata polynomimatriisi yläkolmio…

SimilaarisuusinvariantitMatriisiteoriaJordanin muotoLineaarialgebraSmithin normaalimuotopolynomitFrobeniuksen muotoKarakteristinen polynomiPolyomimatriisitmatriisit
researchProduct

Bernoullin luvut ja Euler-MacLaurinin summakaava

2007

Bernoullin luvutEulerin summakaavaBernoullin polynomitEuler-MacLaurinin summakaava
researchProduct

Matriisin Hessenbergin muoto

2013

ominaisarvotsimilaarisuusKrylovin menetelmäneliömatriisikarakteristinen polynomiHessenbergin matriisimatriisilaskentapolynomitominaisarvolineaarialgebraHouseholderin muunnosmatriisit
researchProduct

Polynomial and horizontally polynomial functions on Lie groups

2022

We generalize both the notion of polynomial functions on Lie groups and the notion of horizontally affine maps on Carnot groups. We fix a subset $S$ of the algebra $\mathfrak g$ of left-invariant vector fields on a Lie group $\mathbb G$ and we assume that $S$ Lie generates $\mathfrak g$. We say that a function $f:\mathbb G\to \mathbb R$ (or more generally a distribution on $\mathbb G$) is $S$-polynomial if for all $X\in S$ there exists $k\in \mathbb N$ such that the iterated derivative $X^k f$ is zero in the sense of distributions. First, we show that all $S$-polynomial functions (as well as distributions) are represented by analytic functions and, if the exponent $k$ in the previous defini…

Mathematics - Differential GeometryLeibman Polynomialnilpotent Lie groupsApplied Mathematicspolynomithorizontally affine functionsryhmäteoriaMetric Geometry (math.MG)polynomial mapsGroup Theory (math.GR)harmoninen analyysiFunctional Analysis (math.FA)Mathematics - Functional AnalysisdifferentiaaligeometriaMathematics - Metric GeometryDifferential Geometry (math.DG)precisely monotone setsFOS: Mathematicspolynomial on groupsMathematics - Group TheoryAnnali di Matematica Pura ed Applicata (1923 -)
researchProduct

Viidennen asteen yhtälön ratkaisukaavan olemassaolon mahdottomuus Galois'n teorian pohjalta

2014

Galois'n teoriapolynomiratkaisukaavapolynomitGalois'n ryhmäryhmäteoriamatemaattiset kaavatyhtälötkuntalaajennus
researchProduct

High-order regularization in lattice-Boltzmann equations

2017

A lattice-Boltzmann equation (LBE) is the discrete counterpart of a continuous kinetic model. It can be derived using a Hermite polynomial expansion for the velocity distribution function. Since LBEs are characterized by discrete, finite representations of the microscopic velocity space, the expansion must be truncated and the appropriate order of truncation depends on the hydrodynamic problem under investigation. Here we consider a particular truncation where the non-equilibrium distribution is expanded on a par with the equilibrium distribution, except that the diffusive parts of high-order nonequilibrium moments are filtered, i.e., only the corresponding advective parts are retained afte…

Shock waverecurrence relationspolynomialsComputational MechanicsLattice Boltzmann methods114 Physical sciences01 natural sciences010305 fluids & plasmassubspaces0103 physical sciences010306 general physicsFluid Flow and Transfer ProcessesPhysicstensor methods: shock tubesHermite polynomialsRecurrence relationta114AdvectionMechanical EngineeringpolynomitMathematical analysisCondensed Matter PhysicsDistribution functionMechanics of MaterialsRegularization (physics)shock tubes [tensor methods]Shear flowPhysics of Fluids
researchProduct

Extremal polynomials in stratified groups

2018

We introduce a family of extremal polynomials associated with the prolongation of a stratified nilpotent Lie algebra. These polynomials are related to a new algebraic characterization of abnormal subriemannian geodesics in stratified nilpotent Lie groups. They satisfy a set of remarkable structure relations that are used to integrate the adjoint equations.

Statistics and Probabilityextremal polynomialsMathematics - Differential GeometryPure mathematicsGeodesicStructure (category theory)Group Theory (math.GR)Characterization (mathematics)algebra01 natural sciencesdifferentiaaligeometriaMathematics - Analysis of PDEsMathematics - Metric Geometry53C17FOS: Mathematics0101 mathematicsAlgebraic numberMathematics - Differential Geometry; Mathematics - Differential Geometry; Mathematics - Analysis of PDEs; Mathematics - Group Theory; Mathematics - Metric Geometry; Mathematics - Optimization and Control; 53C17; 49K30; 17B70Mathematics - Optimization and ControlMathematics010102 general mathematicsStatisticsta111polynomitProlongation53C17 49K30 17B70Lie groupMetric Geometry (math.MG)abnormal extremals010101 applied mathematicsNilpotent Lie algebraNilpotentsub-Riemannian geometryabnormal extremals extremal polynomials Carnot groups sub-Riemannian geometryAbnormal extremals; Carnot groups; Extremal polynomials; Sub-Riemannian geometry; Analysis; Statistics and Probability; Geometry and Topology; Statistics Probability and UncertaintyDifferential Geometry (math.DG)Optimization and Control (math.OC)Carnot groups17B70Probability and UncertaintyGeometry and TopologyStatistics Probability and UncertaintyMathematics - Group TheoryAnalysisAnalysis of PDEs (math.AP)Mathematics - Differential Geometry; Mathematics - Differential Geometry; Mathematics - Analysis of PDEs; Mathematics - Group Theory; Mathematics - Metric Geometry; Mathematics - Optimization and Control; 53C17 49K30 17B7049K30
researchProduct

Reaalianalyyttistä lukuteoriaa

2016

Tämän tutkielman tarkoituksena on tutustuttaa lukija Bernoullin polynomeihin, Γ-funktioon ja lukuteoreettisiin Mertensin lauseisiin. Näiden lisäksi tutkitaan erästä lukuteoreettista tuloa, ja esitellään tähän tuloon liittyviä tiettävästi uusia tuloksia. Bernoullin polynomien avulla todistetaan erityisesti Euler-Maclaurinin lause, joka kertoo erilaisten summien ja integraalien välisestä yhteydestä. Γ-funktion avulla taas todistetaan Stirlingin kaava, joka antaa hyvän approksimaation kertoman n! kasvu- nopeudesta. Mertensin lauseista ensimmäinen kertoo, miten nopeasti lukua n pie- nempien alkulukujen käänteislukujen 1/p summa hajaantuu, kun kasvatetaan lukua n. Toinen Mertensin lause kertoo, …

lukuteoriaphi-torialalkuluvutBernoulliGammaMertensin lauseBernoullin polynomitGamma-funktioMertens
researchProduct

On several notions of complexity of polynomial progressions

2021

For a polynomial progression $$(x,\; x+P_1(y),\; \ldots,\; x+P_{t}(y)),$$ we define four notions of complexity: Host-Kra complexity, Weyl complexity, true complexity and algebraic complexity. The first two describe the smallest characteristic factor of the progression, the third one refers to the smallest-degree Gowers norm controlling the progression, and the fourth one concerns algebraic relations between terms of the progressions. We conjecture that these four notions are equivalent, which would give a purely algebraic criterion for determining the smallest Host-Kra factor or the smallest Gowers norm controlling a given progression. We prove this conjecture for all progressions whose ter…

lukuteoriaGowers normsmultiple recurrenceApplied MathematicsGeneral Mathematicspolynomial progressionskombinatoriikkapolynomitDynamical Systems (math.DS)11B30 37A45Host-Kra factorslukujonotFOS: MathematicsMathematics - CombinatoricsCombinatorics (math.CO)dynaamiset systeemitMathematics - Dynamical SystemsErgodic Theory and Dynamical Systems
researchProduct

On a Continuous Sárközy-Type Problem

2022

Abstract We prove that there exists a constant $\epsilon> 0$ with the following property: if $K \subset {\mathbb {R}}^2$ is a compact set that contains no pair of the form $\{x, x + (z, z^{2})\}$ for $z \neq 0$, then $\dim _{\textrm {H}} K \leq 2 - \epsilon $.

Szemerédi’s theoremfractalsGeneral Mathematicspolynomitpolynomial configurationsHausdorff dimensionfraktaalitmittateoriafinite fieldsharmoninen analyysiFourier transforms of measuresminimeasuresInternational Mathematics Research Notices
researchProduct