Search results for "power law"

showing 10 items of 188 documents

Predicting the time variation of radio emission from MHD simulations of a flaring T-Tauri star

2020

ABSTRACT We model the time-dependent radio emission from a disc accretion event in a T-Tauri star using 3D, ideal magnetohydrodynamic simulations combined with a gyrosynchrotron emission and radiative transfer model. We predict for the first time, the multifrequency (1–1000 GHz) intensity and circular polarization from a flaring T-Tauri star. A flux tube, connecting the star with its circumstellar disc, is populated with a distribution of non-thermal electrons that is allowed to decay exponentially after a heating event in the disc and the system is allowed to evolve. The energy distribution of the electrons, as well as the non-thermal power-law index and loss rate, are varied to see their …

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesPower lawSpectral linelaw.inventionAtmospheric radiative transfer codeslaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsFlux tube010308 nuclear & particles physicsAstronomy and AstrophysicsAccretion (astrophysics)StarsT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaFlareMonthly Notices of the Royal Astronomical Society
researchProduct

Experimental modeling of viscous inclusions in a circular high-strain shear rig: Implications for the interpretation of shape fabrics and deformed en…

2002

[1] Deformation experiments with initially spherical and prolate viscous inclusions suspended in a viscous Newtonian matrix in a circular high strain annular shear rig provide insights on the shape development of inclusions in high strain shear zones during progressive deformation. Inclusions with a specific viscosity ratio with respect to the matrix material show distinct types of three-dimensional shape development. For instance, at a high viscosity ratio between matrix and inclusion a pulsating ellipsoid develops, which both continuously rotates and changes its shape from a sphere to an ellipsoid and back to a sphere. The experiments show that the shape of an inclusion that has a viscosi…

Atmospheric ScienceEcologyPaleontologySoil ScienceMineralogyForestryMechanicsAquatic ScienceOceanographyEllipsoidPower lawPhysics::Fluid DynamicsViscosityGeophysicsShear (geology)RheologySpace and Planetary ScienceGeochemistry and PetrologyFinite strain theoryEarth and Planetary Sciences (miscellaneous)Newtonian fluidShear zoneGeologyEarth-Surface ProcessesWater Science and TechnologyJournal of Geophysical Research: Solid Earth
researchProduct

Exponential Relaxation out of Nonequilibrium

1989

Simulation results are presented for a quench from a disordered state to a state below the coexistence curve. The model which we consider is the Ising model but with the dynamics governed by the Swendsen-Wang transition probabilities. We show that the resulting domain growth has an exponential instead of a power law behaviour and that the system is non-self-averaging while in nonequilibrium. The simulations were carried out on a parallel computer with up to 128 processors.

BinodalPhysicsCondensed Matter::Statistical MechanicsGeneral Physics and AstronomyRelaxation (physics)Non-equilibrium thermodynamicsIsing modelStatistical physicsState (functional analysis)Power lawDomain (mathematical analysis)Exponential functionEurophysics Letters (EPL)
researchProduct

Power-Laws hereditariness of biomimetic ceramics for cranioplasty neurosurgery

2019

Abstract We discuss the hereditary behavior of hydroxyapatite-based composites used for cranioplasty surgery in the context of material isotropy. We classify mixtures of collagen and hydroxiapatite composites as biomimetic ceramic composites with hereditary properties modeled by fractional-order calculus. We assume isotropy of the biomimetic ceramic is assumed and provide thermodynamic of restrictions for the material parameters. We exploit the proposed formulation of the fractional-order isotropic hereditariness further by means of a novel mechanical hierarchy corresponding exactly to the three-dimensional fractional-order constitutive model introduced.

Biomimetic materialsMaterials scienceApplied MathematicsMechanical Engineeringmedicine.medical_treatmentPhysics::Medical PhysicsConstitutive equationIsotropyContext (language use)02 engineering and technology021001 nanoscience & nanotechnologyPower lawCranioplastyBiomimetic materials Cranioplasty Fractional calculus Isotropic hereditariness Power-law hereditariness020303 mechanical engineering & transports0203 mechanical engineeringMechanics of Materialsvisual_artvisual_art.visual_art_mediummedicineCeramicComposite material0210 nano-technologySettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Correlation Dynamics During a Slow Interaction Quench in a One-Dimensional Bose Gas

2014

We investigate the response of a one-dimensional Bose gas to a slow increase of its interaction strength. We focus on the rich dynamics of equal-time single-particle correlations treating the Lieb-Liniger model within a bosonization approach and the Bose-Hubbard model using the time-dependent density-matrix renormalization group method. For short distances, correlations follow a power-law with distance with an exponent given by the adiabatic approximation. In contrast, for long distances, correlations decay algebraically with an exponent understood within the sudden quench approximation. This long distance regime is separated from an intermediate distance one by a generalized Lieb-Robinson …

BosonizationPhysicsCondensed Matter::Quantum GasesLieb-Robinson boundBose gas[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]General Physics and AstronomyFOS: Physical sciencesTomonaga-Luttinger LiquidRenormalization groupPower lawExponential functionAdiabatic theoremequal-time Green's functionsQuantum Gases (cond-mat.quant-gas)Light coneQuantum mechanicsinteraction quenchExponentCondensed Matter - Quantum GasesPACS: 67.85.−d 03.75.Kk 03.75.Lm 67.25.D−
researchProduct

On the hyperporous non-linear elasticity model for fusion-relevant pebble beds

2010

Abstract Packed pebble beds are particular granular systems composed of a large amount of small particles, arranged in irregular lattices and surrounded by a gas filling interstitial spaces. Due to their heterogeneous structure, pebble beds have non-linear and strongly coupled thermal and mechanical behaviours whose constitutive models seem limited, being not suitable for fusion-relevant design-oriented applications. Within the framework of the modelling activities promoted for the lithiated ceramics and beryllium pebble beds foreseen in the Helium-Cooled Pebble Bed breeding blanket concept of DEMO, at the Department of Nuclear Engineering of the University of Palermo (DIN) a thermo-mechani…

Bulk modulusMaterials scienceDeformation (mechanics)Mechanical EngineeringIsotropyConstitutive equationPebble beds Mechanical constitutive model Non-linear elasticityModulusMechanicsElasticity (physics)Power lawNuclear Energy and EngineeringGeneral Materials SciencePebbleSettore ING-IND/19 - Impianti NucleariCivil and Structural Engineering
researchProduct

Temperature concepts for small, isolated systems: 1/t decay and radiative cooling

2003

We report on progress in our investigations of cluster cooling. The analysis of measurements is based on introduction of the microcanonical temperature and a statistical description of the decay of an ensemble with a broad distribution in temperature. The resulting time dependence of the decay rate is a power law close to t �1 , replaced by nearly exponential decay after a characteristic time for quenching by radiative cooling. We focus on results obtained for fullerenes, both anions and cations and recently also neutral C60.

Canonical ensemblePhysicsQuenchingMicrocanonical ensembleRadiative coolingExcited statePhysics::Atomic and Molecular ClustersOptical physicsAtomic physicsExponential decayPower lawAtomic and Molecular Physics and Optics
researchProduct

Computer simulation of bottle-brush polymers with flexible backbone: good solvent versus theta solvent conditions.

2011

By Molecular Dynamics simulation of a coarse-grained bead-spring type model for a cylindrical molecular brush with a backbone chain of $N_b$ effective monomers to which with grafting density $\sigma$ side chains with $N$ effective monomers are tethered, several characteristic length scales are studied for variable solvent quality. Side chain lengths are in the range $5 \le N \le 40$, backbone chain lengths are in the range $50 \le N_b \le 200$, and we perform a comparison to results for the bond fluctuation model on the simple cubic lattice (for which much longer chains are accessible, $N_b \le 1027$, and which corresponds to an athermal, very good, solvent). We obtain linear dimensions of …

Chemical Physics (physics.chem-ph)chemistry.chemical_classificationQuantitative Biology::BiomoleculesMaterials scienceCharacteristic lengthTheta solventFOS: Physical sciencesGeneral Physics and AstronomyBackbone chainPolymerCondensed Matter - Soft Condensed MatterPower lawCondensed Matter::Soft Condensed Matterchemistry.chemical_compoundMolecular dynamicschemistryChemical physicsPhysics - Chemical PhysicsSide chainSoft Condensed Matter (cond-mat.soft)Physical and Theoretical ChemistrySolvent effectsThe Journal of chemical physics
researchProduct

Size Dependence of Tracer Diffusion in Supercooled Liquids

1996

We have determined by forced Rayleigh scattering the diffusion coefficients D of several photochromic tracers with van der Waals radii between 0.38 and 8 nm (the largest ones being photolabeled polystyrene micronetworks) in 10 glass-forming liquids at temperatures between the glass temperature Tg and ∼1.2Tg. The results were analyzed in terms of power law plots, D(T) ∝ T/η(T)ξ, where η is the solvent shear viscosity, and temperature shifts, D(T) ∝ T/η(T + ΔT). The shift ΔT was related with the width of the rotational correlation time distribution via the time−temperature superposition principle.

ChemistryDiffusionGeneral EngineeringThermodynamicsPower lawPhysics::Fluid DynamicsCondensed Matter::Soft Condensed Mattersymbols.namesakeSuperposition principlechemistry.chemical_compoundsymbolsVan der Waals radiusPolystyrenePhysical and Theoretical ChemistrySupercoolingGlass transitionRotational correlation timeThe Journal of Physical Chemistry
researchProduct

Ionic transport and heat capacity of glass-forming metalnitrate mixtures

1997

Abstract Ionic transport of the glass-forming metalnitrate mixtures [Ca(NO 3 ) 2 ] 0.44 [KNO 3 ] 0.56 (MKN), and [Mg(NO 3 ) 2 ] 0.44 [NaNO 3 ] 0.56 (MNN) was investigated near the glass transition using broadband spectroscopy of the complex conductivity to 300 MHz. The real part of the conductivity exhibits a transition from frequency independent to power law behavior as found in most ionic conductors. At high frequencies the frequency exponent approaches unity and becomes larger at low temperatures. In the real part of the dielectric constant, a relaxation step could be observed in CRN. A detailed evaluation of the results within the modulus formalism is presented. The imaginary part of t…

ChemistryThermodynamicsIonic bondingDielectricConductivityCondensed Matter Physics530Power lawHeat capacityElectronic Optical and Magnetic MaterialsNano-Materials ChemistryCeramics and CompositesSpectroscopyGlass transitionJournal of Non-Crystalline Solids
researchProduct