Search results for "programmed cell death"

showing 10 items of 609 documents

Bax-derived membrane-active peptides act as potent and direct inducers of apoptosis in cancer cells.

2011

SUMMARYAlthough many cancer cells are primed for apoptosis, they usually develop resistance to cell death at multiple levels. Permeabilization of the outer mitochondrial membrane, which is mediated by proapoptotic Bcl-2 family members like Bax, is considered as a point-of-no-return for initiating apoptotic cell death. This crucial role has placed Bcl-2 family proteins as recurrent targets for anticancer drug development. Here, we propose and demonstrate a new concept based on using minimal active version of Bax to induce cell death independently of endogenous Bcl-2 proteins. We show that membrane-active segments of Bax can directly induce the release of mitochondria-residing apoptogenic fac…

ApoptosisMitochondrionMiceMESH: Protein Structure Tertiary0302 clinical medicineNeoplasmsgeneticsMESH: AnimalsMESH: Neoplasmsbcl-2-Associated X Protein0303 health sciencesbiologyMESH: PeptidesCytochrome capoptosisCytochromes cMESH: Cytochromes cproapoptotic BaxCell biologyMitochondriadrug therapymitochondria030220 oncology & carcinogenesisBacterial outer membraneProgrammed cell deathMESH: Cell Line TumorMESH: MitochondriaAntineoplastic Agents[SDV.CAN]Life Sciences [q-bio]/Cancerpore-forming peptideschemistryArticle03 medical and health sciencesBcl-2-associated X proteinBcl-2 familyCell Line TumorAnimalsHumansMESH: bcl-2-Associated X ProteinMESH: Mice030304 developmental biologyMESH: HumansMESH: ApoptosisBcl-2 familyCell BiologyProtein Structure Tertiaryanticancer agentantivascular therapyApoptosisdrug effectsCancer cellbiology.proteinMESH: Antineoplastic AgentspharmacologyphysiopathologyPeptidesmetabolism
researchProduct

Artesunate Activates Mitochondrial Apoptosis in Breast Cancer Cells via Iron-catalyzed Lysosomal Reactive Oxygen Species Production

2011

The antimalarial agent artesunate (ART) activates programmed cell death (PCD) in cancer cells in a manner dependent on the presence of iron and the generation of reactive oxygen species. In malaria parasites, ART cytotoxicity originates from interactions with heme-derived iron within the food vacuole. The analogous digestive compartment of mammalian cells, the lysosome, similarly contains high levels of redox-active iron and in response to specific stimuli can initiate mitochondrial apoptosis. We thus investigated the role of lysosomes in ART-induced PCD and determined that in MCF-7 breast cancer cells ART activates lysosome-dependent mitochondrial outer membrane permeabilization. ART impac…

AutophagosomeProgrammed cell deathEndosomeIronArtesunateApoptosisBreast NeoplasmsMitochondrionBiologyBiochemistryPermeabilityAntimalarialsCell Line TumorLysosomemedicineHumansEnzyme InhibitorsMolecular BiologyAutophagyChloroquineCell BiologyArtemisininsMitochondriaCell biologymedicine.anatomical_structureApoptosisMitochondrial MembranesCancer cellFemaleMacrolidesLysosomesReactive Oxygen SpeciesJournal of Biological Chemistry
researchProduct

p62: Friend or Foe? Evidences for OncoJanus and NeuroJanus Roles

2020

p62 is a versatile protein involved in the delicate balance between cell death and survival, which is fundamental for cell fate decision in the context of both cancer and neurodegenerative diseases. As an autophagy adaptor, p62 recognizes polyubiquitin chains and interacts with LC3, thereby targeting the selected cargo to the autophagosome with consequent autophagic degradation. Beside this function, p62 behaves as an interactive hub in multiple signalling including those mediated by Nrf2, NF-κB, caspase-8, and mTORC1. The protein is thus crucial for the control of oxidative stress, inflammation and cell survival, apoptosis, and metabolic reprogramming, respectively. As a multifunctional pr…

AutophagosomeProgrammed cell deathP62ApoptosisContext (language use)mTORC1Cell fate determinationBiologyCatalysislcsh:ChemistryInorganic ChemistryStress granuleAutophagymedicinePhysical and Theoretical Chemistrylcsh:QH301-705.5Molecular BiologySpectroscopyCancerNeurodegenerative diseasesOrganic ChemistryNeurodegenerationAutophagyGeneral Medicinemedicine.diseaseComputer Science ApplicationsCell biologylcsh:Biology (General)lcsh:QD1-999International Journal of Molecular Sciences
researchProduct

Autophagy in development and stress responses of plants.

2006

The uptake and degradation of cytoplasmic material by vacuolar autophagy in plants has been studied extensively by electron microscopy and shown to be involved in developmental processes such as vacuole formation, deposition of seed storage proteins and senescence, and in the response of plants to nutrient starvation and to pathogens. The isolation of genes required for autophagy in yeast has allowed the identification of many of the corresponding Arabidopsis genes based on sequence similarity. Knockout mutations in some of these Arabidopsis genes have revealed physiological roles for autophagy in nutrient recycling during nitrogen deficiency and in senescence. Recently, markers for monitor…

AutophagosomeSenescenceProgrammed cell deathbiologyArabidopsis ProteinsAutophagyArabidopsisfood and beveragesCell BiologyVacuolebiology.organism_classificationGenes PlantCell biologyBiochemistryArabidopsisAutophagyMolecular BiologyGeneFunction (biology)Autophagy
researchProduct

Involvement of PAR-4 in Cannabinoid-Dependent Sensitization of Osteosarcoma Cells to TRAIL-Induced Apoptosis

2014

The synthetic cannabinoid WIN 55,212-2 is a potent cannabinoid receptor agonist with anticancer potential. Experiments were performed to determine the effects of WIN on proliferation, cell cycle distribution, and programmed cell death in human osteosarcoma MG63 and Saos-2 cells. Results show that WIN induced G2/M cell cycle arrest, which was associated with the induction of the main markers of ER stress (GRP78, CHOP and TRB3). In treated cells we also observed the conversion of the cytosolic form of the autophagosome marker LC3-I into LC3-II (the lipidated form located on the autophagosome membrane) and the enhanced incorporation of monodansylcadaverine and acridine orange, two markers of t…

AutophagosomeautophagyProgrammed cell deathCannabinoids ER stress autophagy TRAIL osteosarcoma cells GRP78/PAR-4 complex.Cannabinoid receptorMorpholinesCellApoptosisTRAILNaphthalenesBiologyGRP78/PAR-4 complex.Applied Microbiology and BiotechnologyTNF-Related Apoptosis-Inducing LigandCadaverineCell Line TumorSettore BIO/10 - BiochimicamedicineHumansRNA Small InterferingEndoplasmic Reticulum Chaperone BiPMolecular BiologyHeat-Shock ProteinsEcology Evolution Behavior and SystematicsCell ProliferationCannabinoid Receptor AgonistsOsteosarcomaCannabinoidsAutophagyCell Cycle Checkpointsosteosarcoma cellsCell BiologyCell cycleEndoplasmic Reticulum StressAcridine OrangeBenzoxazinesCell biologymedicine.anatomical_structureApoptosisAutophagosome membraneApoptosis Regulatory ProteinsER stressMicrotubule-Associated ProteinsResearch PaperDevelopmental Biology
researchProduct

2020

BAG3, a multifunctional HSP70 co-chaperone and anti-apoptotic protein that interacts with the ATPase domain of HSP70 through its C-terminal BAG domain plays a key physiological role in cellular proteostasis. The HSP70/BAG3 complex determines the levels of a large number of selective client proteins by regulating their turnover via the two major protein degradation pathways, i.e. proteasomal degradation and macroautophagy. On the one hand, BAG3 competes with BAG1 for binding to HSP70, thereby preventing the proteasomal degradation of its client proteins. By functionally interacting with HSP70 and LC3, BAG3 also delivers polyubiquitinated proteins to the autophagy pathway. BAG3 exerts a numbe…

BAG domainProgrammed cell deathProteostasisChemistryAutophagyGeneral MedicineProtein degradationBAG3Cell adhesionBAG1Cell biologyCells
researchProduct

Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

2015

Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ?accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. "Regulated cell death" (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to…

Biochemical Manifestations of Cell DeathISCHEMIA-REPERFUSION INJURYApoptosisReviewTransduction (genetics)0302 clinical medicineCASPASE INHIBITION SWITCHESAnimals; Humans; Terminology as Topic; Apoptosis; Signal Transduction610 Medicine & healthCaspaseTUMOR-NECROSIS-FACTOR0303 health sciencesSettore BIO/17biologySettore BIO/11NeurodegenerationSettore BIO/13APOPTOSIS3. Good healthMedicina Básicacell death030220 oncology & carcinogenesiscell death; Morphologic Aspects of Cell Death; Biochemical Manifestations of Cell DeathSignal transductionDOMAIN-LIKE PROTEINIntracellularHumanSignal TransductionNecroptosiCYTOCHROME-C RELEASEOUTER-MEMBRANE PERMEABILIZATIONProgrammed cell deathCIENCIAS MÉDICAS Y DE LA SALUDSettore BIO/06Inmunología610 Medicine & healthCELL DEATHNOQ-VD-OPH03 medical and health sciencesSettore MED/04 - PATOLOGIA GENERALEddc:570Terminology as TopicAPOPTOSIS-INDUCING FACTORMIXED LINEAGE KINASEmedicineAnimalsHumansAnimals; Humans; Terminology as Topic; Apoptosis; Signal Transduction; Molecular Biology; Cell BiologyMorphologic Aspects of Cell DeathSettore BIO/10Molecular Biology030304 developmental biologyAnimalCell growthApoptosiBiology and Life SciencesCell Biologymedicine.diseaseMITOCHONDRIAL PERMEABILITY TRANSITIONApoptosisImmunologybiology.proteinNeuroscienceCell death and differentiation
researchProduct

A Neuroprotective Function for the Hematopoietic Protein Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF)

2007

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic cytokine responsible for the proliferation, differentiation, and maturation of cells of the myeloid lineage, which was cloned more than 20 years ago. Here we uncovered a novel function of GM-CSF in the central nervous system (CNS). We identified the GM-CSF α-receptor as an upregulated gene in a screen for ischemia-induced genes in the cortex. This receptor is broadly expressed on neurons throughout the brain together with its ligand and induced by ischemic insults. In primary cortical neurons and human neuroblastoma cells, GM-CSF counteracts programmed cell death and induces BCL-2 and BCL-Xl expression in a dose- a…

Brain InfarctionMaleProgrammed cell deathTime FactorsMyeloidmedicine.medical_treatmentDrug Evaluation Preclinicalbcl-X ProteinApoptosisBiologyNeuroprotectionBrain IschemiaPhosphatidylinositol 3-KinasesmedicineAnimalsHumansMyeloid CellsRats Long-EvansRats WistarProtein kinase BCell ProliferationCerebral CortexNeuronsDose-Response Relationship DrugGrowth factorGranulocyte-Macrophage Colony-Stimulating FactorCell DifferentiationNeurodegenerative DiseasesRatsUp-RegulationCell biologyDisease Models AnimalHaematopoiesisNeuroprotective Agentsmedicine.anatomical_structureGranulocyte macrophage colony-stimulating factorNeurologyBlood-Brain BarrierReceptors Granulocyte-Macrophage Colony-Stimulating FactorImmunologyNeurology (clinical)Signal transductionCardiology and Cardiovascular MedicineProto-Oncogene Proteins c-aktSignal Transductionmedicine.drugJournal of Cerebral Blood Flow & Metabolism
researchProduct

The Programmed Death (PD)‐1/PD‐Ligand 1 Pathway Regulates Graft‐Versus‐Host‐Reactive CD8 T Cells After Liver Transplantation

2008

Acute graft-versus-host disease (aGVHD) is a life-threatening complication after solid-organ transplantation, which is mediated by host-reactive donor T cells emigrating from the allograft. We report on two liver transplant recipients who developed an almost complete donor chimerism in peripheral blood and bone marrow-infiltrating T cells during aGVHD. By analyzing these T cells directly ex vivo, we found that they died by apoptosis over time without evidence of rejection by host T cells. The host-versus-donor reactivity was selectively impaired, as anti-third-party and antiviral T cells were still detectable in the host repertoire. These findings support the acquired donor-specific allotol…

CD4-Positive T-LymphocytesMaleCell TransplantationProgrammed Cell Death 1 ReceptorGraft vs Host DiseaseCD8-Positive T-LymphocytesTCIRG1MiceInterleukin 21Immune systemAntigenAntigens CDAnimalsHumansImmunology and AllergyCytotoxic T cellMedicinePharmacology (medical)IL-2 receptorMice KnockoutTransplantationbusiness.industryInterleukin-2 Receptor alpha SubunitForkhead Transcription FactorsMiddle AgedLiver TransplantationTransplantationsurgical procedures operativeGene Expression RegulationAntigens SurfaceImmunologyInterleukin 12Apoptosis Regulatory ProteinsbusinessImmunosuppressive AgentsAmerican Journal of Transplantation
researchProduct

PD-1 signalling in CD4+T cells restrains their clonal expansion to an immunogenic stimulus, but is not critically required for peptide-induced tolera…

2010

Summary The ultimate outcome of T-cell recognition of peptide–major histocompatibility complex (MHC) complexes is determined by the molecular context in which antigen presentation is provided. The paradigm is that, after exposure to peptides presented by steady-state dendritic cells (DCs), inhibitory signals dominate, leading to the deletion and/or functional inactivation of antigen-reactive T cells. This has been utilized in a variety of models providing peptide antigen in soluble form in the absence of adjuvant. A co-inhibitory molecule of considerable current interest is PD-1. Here we show that there is the opportunity for the PD-1/PD-L1 interaction to function in inhibiting the T-cell r…

CD4-Positive T-LymphocytesOvalbuminTransgeneProgrammed Cell Death 1 ReceptorImmunologyAntigen presentationMice TransgenicCell SeparationCD8-Positive T-LymphocytesBiologyLymphocyte ActivationMajor histocompatibility complexMiceImmune systemBlocking antibodyImmune ToleranceAnimalsImmunology and AllergyT-cell receptorOriginal ArticlesFlow CytometryAntigens DifferentiationPeptide FragmentsCell biologyMice Inbred C57BLTolerance inductionPhenotypeImmunologybiology.proteinCD8Signal TransductionImmunology
researchProduct