Search results for "prosessit"
showing 10 items of 264 documents
Accelerated transport and growth with symmetrized dynamics
2013
In this paper we consider a model of accelerated dynamics with the rules modified from those of the recently proposed [Dong et al., Phys. Rev. Lett. 109, 130602 (2012)] accelerated exclusion process (AEP) such that particle-vacancy symmetry is restored to facilitate a mapping to a solid-on-solid growth model in $1+1$ dimensions. In addition to kicking a particle ahead of the moving particle, as in the AEP, in our model another particle from behind is drawn, provided it is within the ``distance of interaction'' denoted by ${\ensuremath{\ell}}_{\mathrm{max}}$. We call our model the doubly accelerated exclusion process (DAEP). We observe accelerated transport and interface growth and widening …
Poisson-prosessit
2015
Tämän tutkielman tarkoituksena on tutustua erilaisiin Poisson-prosesseihin, joita käytetään muun muassa vakuutusmatematiikassa, jonotusteoriassa, rahoituksessa sekä kun mallinnetaan aikaa, kunnes jotakin tapahtuu. Tutkielmassa tutustutaan Poisson-prosessien tärkeimpiin jakauman tunnuslukuihin ja ominaisuuksiin todistuksineen sekä esimerkkien muodossa nähdään mitä hyötyä ominaisuuksista käytännössä on. Ensimmäisenä tutustutaan homogeeniseen ja epähomogeeniseen Poisson-prosessiin sekä niiden ominaisuuksiin. Esimerkeissä lasketaan eri käytännön ongelmia ja lisäksi lasketaan tunnettu odottamiseen liittyvä paradoksi, joka tunnetaan muun muassa nimellä liftarin paradoksi ja josta tässä käytetään …
Investigating the causal mechanisms underlying the customization of software development methods
2017
Over the last four decades, software development has been one of the mainstream topics in the Software Engineering and Information Systems disciplines. Thousands of methods have been put forward offering prescriptions for software development processes. The goal of these methods is to produce high-quality software in a systematic manner. However, it is widely known that these methods are rarely followed as prescribed – developers often modify or skip different steps, practices, or quality rules recommended by software development methods. While a group of previous studies suggests that maximizing the flexibility and leanness of software development processes is the key driver of such custom…
Decoupling on the Wiener Space, Related Besov Spaces, and Applications to BSDEs
2021
We introduce a decoupling method on the Wiener space to define a wide class of anisotropic Besov spaces. The decoupling method is based on a general distributional approach and not restricted to the Wiener space. The class of Besov spaces we introduce contains the traditional isotropic Besov spaces obtained by the real interpolation method, but also new spaces that are designed to investigate backwards stochastic differential equations (BSDEs). As examples we discuss the Besov regularity (in the sense of our spaces) of forward diffusions and local times. It is shown that among our newly introduced Besov spaces there are spaces that characterize quantitative properties of directional derivat…
Tapaustutkimus kontrollien kehittämisestä talouden prosesseissa SOX:n vaatimusten pohjalta tietojärjestelmien näkökulmasta
2007
Journalistisen työprosessin jäljillä
2017
Finite-size effects in dynamics of zero-range processes
2010
The finite-size effects prominent in zero-range processes exhibiting a condensation transition are studied by using continuous-time Monte Carlo simulations. We observe that, well above the thermodynamic critical point, both static and dynamic properties display fluid-like behavior up to a density {\rho}c (L), which is the finite-size counterpart of the critical density {\rho}c = {\rho}c (L \rightarrow \infty). We determine this density from the cross-over behavior of the average size of the largest cluster. We then show that several dynamical characteristics undergo a qualitative change at this density. In particular, the size distribution of the largest cluster at the moment of relocation,…
Conditional convex orders and measurable martingale couplings
2014
Strassen's classical martingale coupling theorem states that two real-valued random variables are ordered in the convex (resp.\ increasing convex) stochastic order if and only if they admit a martingale (resp.\ submartingale) coupling. By analyzing topological properties of spaces of probability measures equipped with a Wasserstein metric and applying a measurable selection theorem, we prove a conditional version of this result for real-valued random variables conditioned on a random element taking values in a general measurable space. We also provide an analogue of the conditional martingale coupling theorem in the language of probability kernels and illustrate how this result can be appli…
Weighted bounded mean oscillation applied to backward stochastic differential equations
2015
Abstract We deduce conditional L p -estimates for the variation of a solution of a BSDE. Both quadratic and sub-quadratic types of BSDEs are considered, and using the theory of weighted bounded mean oscillation we deduce new tail estimates for the solution ( Y , Z ) on subintervals of [ 0 , T ] . Some new results for the decoupling technique introduced in Geiss and Ylinen (2019) are obtained as well and some applications of the tail estimates are given.
Time-dependent weak rate of convergence for functions of generalized bounded variation
2016
Let $W$ denote the Brownian motion. For any exponentially bounded Borel function $g$ the function $u$ defined by $u(t,x)= \mathbb{E}[g(x{+}\sigma W_{T-t})]$ is the stochastic solution of the backward heat equation with terminal condition $g$. Let $u^n(t,x)$ denote the corresponding approximation generated by a simple symmetric random walk with time steps $2T/n$ and space steps $\pm \sigma \sqrt{T/n}$ where $\sigma > 0$. For quite irregular terminal conditions $g$ (bounded variation on compact intervals, locally H\"older continuous) the rate of convergence of $u^n(t,x)$ to $u(t,x)$ is considered, and also the behavior of the error $u^n(t,x)-u(t,x)$ as $t$ tends to $T$