Search results for "protein complexes"

showing 10 items of 113 documents

Bio serves nano: biological light-harvesting complex as energy donor for semiconductor quantum dots.

2012

Light-harvesting complex (LHCII) of the photosynthetic apparatus in plants is attached to type-II core-shell CdTe/CdSe/ZnS nanocrystals (quantum dots, QD) exhibiting an absorption band at 710 nm and carrying a dihydrolipoic acid coating for water solubility. LHCII stays functional upon binding to the QD surface and enhances the light utilization of the QDs significantly, similar to its light-harvesting function in photosynthesis. Electronic excitation energy transfer of about 50% efficiency is shown by donor (LHCII) fluorescence quenching as well as sensitized acceptor (QD) emission and corroborated by time-resolved fluorescence measurements. The energy transfer efficiency is commensurable …

Light-Harvesting Protein ComplexesSulfidesPhotochemistryAbsorptionLight-harvesting complexQuantum DotsElectrochemistryCadmium CompoundsGeneral Materials ScienceAbsorption (electromagnetic radiation)Selenium CompoundsSpectroscopyFluorescent Dyesbusiness.industryChemistryPeasSurfaces and InterfacesCondensed Matter PhysicsFluorescenceAcceptorNanocrystalEnergy TransferSemiconductorsAbsorption bandQuantum dotZinc CompoundsOptoelectronicsTelluriumbusinessVisible spectrumLangmuir : the ACS journal of surfaces and colloids
researchProduct

Kinetics of Insulin Aggregation: Disentanglement of Amyloid Fibrillation from Large-Size Cluster Formation

2006

Kinetics of human insulin aggregation has been studied at pH 1.6 and 60 degrees C, when amyloid fibrils are formed. We developed a novel approach based on the analysis of scattered light intensity distribution, which allows distinguishing between small and large size aggregates. By this method, we observed an exponential growth of fibrillar aggregates implying a heterogeneous aggregation mechanism. Also, the apparent lag time observed, correlated with the major increase of thioflavin T fluorescence, has been assigned to the onset of large size cluster formation.

MECHANISMModels MolecularAmyloidAmyloidmedicine.medical_treatmentKineticsBiophysicschemistry.chemical_compoundExponential growthFIBRILSmedicineCluster (physics)HumansInsulinComputer SimulationBenzothiazolesParticle SizeATOMIC-FORCE MICROSCOPYInsulinPATHWAYSProteinsFluorescenceLIGHT-SCATTERINGCrystallographyKineticsThiazoleschemistryModels ChemicalMultiprotein ComplexesBiophysicsThioflavinParticle sizeBETA-PROTEINNUCLEATIONBiophysical Journal
researchProduct

The landscape of epilepsy-related GATOR1 variants

2019

Purpose:\ud \ud To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway.\ud \ud Methods:\ud \ud We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants.\ud \ud Results:\ud \ud The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia…

Male0301 basic medicineProbandDEPDC5SUDEP030105 genetics & heredityBioinformaticsLoss of Function Mutation/geneticsEpilepsyINDEL MutationLoss of Function MutationmTORC1 pathwayGenetics(clinical)ChildGenetics (clinical)Multiprotein Complexes/geneticsBrugada SyndromeDNA Copy Number VariationBrugada syndromeINDEL Mutation/geneticsGTPase-Activating ProteinsNPRL3SeizureDEPDC5PhenotypePedigree3. Good healthBrugada Syndrome/geneticsChild PreschoolFemaleHumanSignal TransductionDNA Copy Number VariationsAdolescentSeizures/complicationsMechanistic Target of Rapamycin Complex 1/geneticsDNA Copy Number Variations/geneticsMechanistic Target of Rapamycin Complex 1Tumor Suppressor Proteins/geneticsArticleFocal cortical dysplasia03 medical and health sciencesSeizuresGTPase-Activating Proteins/geneticsmedicineHumansGenetic Predisposition to DiseaseDEPDC5; Focal cortical dysplasia; Genetic focal epilepsy; mTORC1 pathway; SUDEPGenetic focal epilepsyEpilepsy/complicationsRepressor Proteins/geneticsEpilepsybusiness.industryGTPase-Activating ProteinTumor Suppressor ProteinsInfant NewbornCorrectionInfantRepressor ProteinCortical dysplasiamedicine.diseaseddc:616.8Repressor Proteins030104 developmental biologyFrontal lobe seizures[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsMultiprotein ComplexesMultiprotein ComplexeSignal Transduction/geneticsHuman medicinebusiness
researchProduct

Dense Bodies of a gH/gL/UL128/UL130/UL131 Pentamer-Repaired Towne Strain of Human Cytomegalovirus Induce an Enhanced Neutralizing Antibody Response

2019

The development of a vaccine against human cytomegalovirus infection (HCMV) is a high-priority medical goal. The viral pentameric protein complex consisting of glycoprotein H (gH)/gL/UL128-131A (PC) is considered to be an important vaccine component. Its relevance to the induction of a protective antibody response is, however, still a matter of debate. We addressed this issue by using subviral dense bodies (DBs) of HCMV. DBs are exceptionally immunogenic. Laboratory HCMV strain DBs harbor important neutralizing antibody targets, like the glycoproteins B, H, L, M, and N, but they are devoid of the PC. To be able to directly compare the impact of the PC on the levels of neutralizing antibody …

MaleHuman cytomegalovirusForeskinImmunologyCongenital cytomegalovirus infectionCytomegalovirusMutagenesis (molecular biology technique)MicrobiologyVirusCytomegalovirus VaccinesMiceViral Envelope ProteinsAntigenVirologyVaccines and Antiviral AgentsHuman Umbilical Vein Endothelial CellsmedicineAnimalsHumansNeutralizing antibodyCells Culturedchemistry.chemical_classificationMembrane GlycoproteinsbiologyImmunogenicitymedicine.diseaseAntibodies NeutralizingVirologychemistryMultiprotein ComplexesInsect ScienceCytomegalovirus Infectionsbiology.proteinRabbitsGlycoproteinJournal of Virology
researchProduct

Muscle protein synthesis, mTORC1/MAPK/Hippo signaling, and capillary density are altered by blocking of myostatin and activins

2012

Loss of muscle mass and function occurs in various diseases. Myostatin blocking can attenuate muscle loss, but downstream signaling is not well known. Therefore, to elucidate associated signaling pathways, we used the soluble activin receptor IIb (sActRIIB-Fc) to block myostatin and activins in mice. Within 2 wk, the treatment rapidly increased muscle size as expected but decreased capillary density per area. sActRIIB-Fc increased muscle protein synthesis 1–2 days after the treatment correlating with enhanced mTORC1 signaling (phosphorylated rpS6 and S6K1, r = 0.8). Concurrently, increased REDD1 and eIF2Bε protein contents and phosphorylation of 4E-BP1 and AMPK was observed. In contrast, pr…

Malemedicine.medical_specialtyPhysiologyEndocrinology Diabetes and MetabolismMuscle ProteinsCell CountP70-S6 Kinase 1MyostatinMechanistic Target of Rapamycin Complex 1Protein Serine-Threonine KinasesBiologyMice03 medical and health sciences0302 clinical medicinePhysiology (medical)Internal medicinemedicineAnimalsHippo Signaling PathwayExtracellular Signal-Regulated MAP KinasesMuscle Skeletalta315030304 developmental biology0303 health sciencesHippo signaling pathwayMyogenesisTOR Serine-Threonine KinasesSkeletal muscleActivin receptorMyostatinActivinsCapillariesMice Inbred C57BLmedicine.anatomical_structureEndocrinologyHippo signalingMultiprotein ComplexesProtein Biosynthesisbiology.proteinIntercellular Signaling Peptides and ProteinsPhosphorylation030217 neurology & neurosurgerySignal TransductionAmerican Journal of Physiology-Endocrinology and Metabolism
researchProduct

DNA origami as a nanoscale template for protein assembly

2009

We describe two general approaches to the utilization of DNA origami structures for the assembly of materials. In one approach, DNA origami is used as a prefabricated template for subsequent assembly of materials. In the other, materials are assembled simultaneously with the DNA origami, i.e. the DNA origami technique is used to drive the assembly of materials. Fabrication of complex protein structures is demonstrated by these two approaches. The latter approach has the potential to be extended to the assembly of multiple materials with single attachment chemistry.

Materials scienceMechanical EngineeringBioengineeringNanotechnologyDNAGeneral ChemistryNanostructuresComplex proteinMechanics of MaterialsMultiprotein ComplexesDNA nanotechnologyNanotechnologyDNA origamiGeneral Materials ScienceStreptavidinSelf-assemblyProtein MultimerizationElectrical and Electronic EngineeringNanoscopic scaleNanotechnology
researchProduct

Poly-Xaa Sequences in Proteins - Biological Role and Interactions with Metal Ions: Chemical and Medical Aspects

2016

Background: The understanding of the bioinorganic and coordination chemistry of metalloproteins containing unusual poly-Xaa sequences, in which a single amino acid is repeated consecutively, is crucial for describing their metal binding-structure-function relationship, and therefore also crucial for understanding their medicinal potential. To the best of our knowledge, this is the first systematic review on metal complexes with polyXaa sequences. Methods: We performed a thorough search of high quality peer reviewed literature on poly-Xaa type of sequences in proteins, focusing on their biological importance and on their interactions with metal ions. Results: 228 papers were included in the…

Metal ions in aqueous solutionComputational biology010402 general chemistry01 natural sciencesBiochemistryCoordination complexTurn (biochemistry)metal chaperonesCoordination ComplexesDrug DiscoveryMetalloproteinHumansAmino Acid SequenceSingle amino acidAmino AcidsBinding siteantimicrobial therapeuticsIonsPharmacologychemistry.chemical_classification010405 organic chemistryMetal bindingOrganic Chemistrymetal ionsProteinsBioinorganic chemistry0104 chemical scienceschemistryChemical physicsMetal-protein complexespoly-Xaa peptide sequencesMolecular MedicineCurrent Medicinal Chemistry
researchProduct

Energy Transfer between Surface-Immobilized Light-Harvesting Chlorophyll a/b Complex (LHCII) Studied by Surface Plasmon Field-Enhanced Fluorescence S…

2010

The major light-harvesting chlorophyll a/b complex (LHCII) of the photosynthetic apparatus in green plants can be viewed as a protein scaffold binding and positioning a large number of pigment molecules that combines rapid and efficient excitation energy transfer with effective protection of its pigments from photobleaching. These properties make LHCII potentially interesting as a light harvester (or a model thereof) in photoelectronic applications. Most of such applications would require the LHCII to be immobilized on a solid surface. In a previous study we showed the immobilization of recombinant LHCII on functionalized gold surfaces via a 6-histidine tag (His tag) in the protein moiety. …

Models MolecularChlorophyll aProtein ConformationSurface PropertiesLight-Harvesting Protein ComplexesPhotochemistryFluorescence spectroscopyAbsorptionchemistry.chemical_compoundFluorescence Resonance Energy TransferElectrochemistryMoleculeGeneral Materials ScienceSpectroscopyFluorescent DyesSurface plasmonPeasSurfaces and InterfacesEnzymes ImmobilizedCondensed Matter PhysicsPhotobleachingFluorescenceAcceptorKineticsB vitaminschemistryLangmuir
researchProduct

Thermally Activated Superradiance and Intersystem Crossing in the Water-Soluble Chlorophyll Binding Protein

2009

The crystal structure of the class IIb water-soluble chlorophyll binding protein (WSCP) from Lepidium virginicum is used to model linear absorption and circular dichroism spectra as well as excited state decay times of class IIa WSCP from cauliflower reconstituted with chlorophyll (Chl) a and Chl b. The close agreement between theory and experiment suggests that both types of WSCP share a common Chl binding motif, where the opening angle between pigment planes in class IIa WSCP should not differ by more than 10 degrees from that in class IIb. The experimentally observed (Schmitt et al. J. Phys. Chem. B 2008, 112, 13951) decrease in excited state lifetime of Chl a homodimers with increasing …

Models MolecularCircular DichroismDimerExcitonStatic ElectricityLight-Harvesting Protein ComplexesTemperatureWaterCrystal structureCrystallography X-RayPhotochemistryLepidiumSurfaces Coatings and Filmschemistry.chemical_compoundCrystallographyIntersystem crossingSolubilitychemistryChlorophyllExcited stateMaterials ChemistryChlorophyll bindingQuantum TheoryPhysical and Theoretical ChemistryAbsorption (chemistry)The Journal of Physical Chemistry B
researchProduct

Peptides Derived from Apoptotic Bax and Bid Reproduce the Poration Activity of the Parent Full-Length Proteins

2005

Bax and Bid are proapoptotic proteins of the Bcl-2 family that regulate the release of apoptogenic factors from mitochondria. Although they localize constitutively in the cytoplasm, their apoptotic function is exerted at the mitochondrial outer membrane, and is related to their ability to form transbilayer pores. Here we report the poration activity of fragments from these two proteins, containing the first alpha-helix of a colicinlike hydrophobic hairpin (alpha-helix 5 of Bax and alpha-helix 6 of Bid). Both peptides readily bind to synthetic lipid vesicles, where they adopt predominantly alpha-helical structures and induce the release of entrapped calcein. In planar lipid membranes they fo…

Models MolecularMolecular Sequence DataBiophysicsApoptosisPeptideIn Vitro TechniquesBiophysical PhenomenaIon ChannelsPermeabilityProtein Structure Secondarychemistry.chemical_compoundBcl-2-associated X proteinSpectroscopy Fourier Transform InfraredHumansChannels Receptors and Electrical SignalingAmino Acid SequencePeptide sequenceIon channelbcl-2-Associated X Proteinchemistry.chemical_classificationbiologyChemistryCircular DichroismPeptide FragmentsCell biologyCalceinMembraneProto-Oncogene Proteins c-bcl-2CytoplasmMultiprotein ComplexesLiposomesbiology.proteinPèptidsCarrier ProteinsBacterial outer membraneProteïnesBH3 Interacting Domain Death Agonist ProteinBiophysical Journal
researchProduct