Search results for "protein conformation"

showing 10 items of 515 documents

Not Only for Egg Yolk—Functional and Evolutionary Insights from Expression, Selection, and Structural Analyses of Formica Ant Vitellogenins

2014

Vitellogenin (Vg), a storage protein, has been extensively studied for its egg-yolk precursor role, and it has been suggested to be fundamentally involved in caste differences in social insects. More than one Vg copy has been reported in several oviparous species, including ants. However, the number and function of different Vgs, their phylogenetic relatedness, and their role in reproductive queens and nonreproductive workers have been studied in few species only. We studied caste-biased expression of Vgs in seven Formica ant species. Only one copy of conventional Vg was identified in Formica species, and three Vg homologs, derived from ancient duplications, which represent yet undiscovered…

MaleModels Molecularfood.ingredientProtein ConformationSequence HomologyHymenopteraProtein Structure SecondaryEvolution MolecularVitellogeninsVitellogeninfoodPhylogeneticsGene DuplicationYolkGene duplicationGeneticsAnimalsSelection GeneticMolecular BiologyGenePhylogenyEcology Evolution Behavior and SystematicsGeneticsbiologyAntsta1184biology.organism_classificationEvolutionary biologybiology.proteinta1181Insect ProteinsFemaleNeofunctionalizationVitellogeninsMolecular Biology and Evolution
researchProduct

Structural factors controlling ligand binding to myoglobin: a kinetic hole-burning study.

1998

Using temperature-derivative spectroscopy in the temperature range below 100 K, we have studied the dependence of the Soret band on the recombination barrier in sperm whale carbonmonoxy myoglobin (MbCO) after photodissociation at 12 K. The spectra were separated into contributions from the photodissociated species, Mb*CO, and CO-bound myoglobin. The line shapes of the Soret bands of both photolyzed and liganded myoglobin were analyzed with a model that takes into account the homogeneous bandwidth, coupling of the electronic transition to vibrational modes, and static conformational heterogeneity. The analysis yields correlations between the activation enthalpy for rebinding and the model p…

MaleMultidisciplinaryBinding SitesProtein ConformationSpectrum AnalysisPhotodissociationEnthalpyWhalesBiological SciencesLigandsSpermatozoaMolecular electronic transitionSpectral lineCrystallographychemistry.chemical_compoundMyoglobinchemistryChemical physicsMolecular vibrationAnimalsSpectroscopyMetmyoglobinHemeProtein BindingProceedings of the National Academy of Sciences of the United States of America
researchProduct

Comparison of neutron and X-ray scattering of dilute myoglobin solutions.

1975

Experimental results obtained by neutron scattering of dilute solutions of myoglobin are compared with those obtained by X-ray scattering. X-ray scattering remains the more powerful technique at wider angles above 0.3 A−1, where neutron experiments are less accurate because of low coherent scattering probability and high incoherent background. Neutron scattering is preferable at momentum transfers below 0.2 A−1; the conditions for applying the contrast variation method for the evaluation of the three basic scattering functions, which are due to shape and internal structure, equation (3), are ideally fulfilled in this region. Furthermore, neutrons allow observation of the hydrogen-deuterium …

MaleProtein ConformationAstrophysics::High Energy Astrophysical PhenomenaNeutron scatteringInelastic scatteringOpticsStructural BiologyMethodsAnimalsScattering RadiationMolecular BiologyPhysicsNeutronsQuasielastic scatteringScatteringbusiness.industryMyoglobinX-RaysWhalesDeuteriumSmall-angle neutron scatteringComputational physicsQuasielastic neutron scatteringScattering theoryBiological small-angle scatteringbusinessMathematicsJournal of molecular biology
researchProduct

Identification, structure, and properties of hemocyanins from Diplopod myriapoda.

1999

Hemocyanins are copper-containing, respiratory proteins that occur in the hemolymph of many arthropod species. Here we report for the first time the presence of hemocyanins in the diplopod Myriapoda, demonstrating that these proteins are more widespread among the Arthropoda than previously thought. The hemocyanin of Spirostreptus sp. (Diplopoda: Spirostreptidae) is composed of two immunologically distinct subunits in the 75-kDa range that are most likely arranged in a 36-mer (6 x 6) native molecule. It has a high oxygen affinity (P(50) = 4.7 torr) but low cooperativity (h = 1.3 +/- 0.2). Spirostreptus hemocyanin is structurally similar to the single known hemocyanin from the myriapod taxon,…

MaleProtein Conformationmedicine.medical_treatmentBlotting WesternMyriapodachemical and pharmacologic phenomenaCooperativityCross Reactionscomplex mixturesBiochemistryEpitopesHemolymphmedicineAnimalsMolecular BiologyArthropodsbiologyhemic and immune systemsHemocyaninCell BiologyAnatomybiology.organism_classificationSpirostreptusOxygenBiochemistrySpectrophotometryHemocyaninsElectrophoresis Polyacrylamide GelFemaleArthropodSpirostreptidaeScutigera coleoptrataProtein BindingThe Journal of biological chemistry
researchProduct

Novel biosensoric devices based on molecular protein hetero-multilayer films

1997

We have developed a novel concept for the modification of technical surfaces with molecularly well-organized layers of bioorganic components. A molecular construction set has been used to implement this concept which is based on molecularly stratified polyelectrolyte films as a structure decoupling protein layers from solid substrates. Utilizing this technology, one can start from a number of different substrates to obtain the same surface structures, on which protein hetero-multilayer films can be prepared to functionalize the interface for (potentially very different) purposes. We have demonstrated the viability of this concept by constructing a biosensor surface that was characterized by…

Materials scienceProtein ConformationBiophysicsProteinsNanotechnologyBiosensing TechniquesOrders of magnitude (numbers)BiochemistryPolyelectrolyteModels StructuralElectrolytesSpectrometry FluorescenceEnergy TransferMonolayerIndicators and ReagentsReactivity (chemistry)AdsorptionLayer (electronics)BiosensorStoichiometryFluorescent DyesProtein BindingAdvances in Biophysics
researchProduct

Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering

2008

We demonstrate tracking of protein structural changes with time-resolved wide-angle X-ray scattering (TR-WAXS) with nanosecond time resolution. We investigated the tertiary and quaternary conformational changes of human hemoglobin under nearly physiological conditions triggered by laser-induced ligand photolysis. We also report data on optically induced tertiary relaxations of myoglobin and refolding of cytochrome c to illustrate the wide applicability of the technique. By providing insights into the structural dynamics of proteins functioning in their natural environment, TR-WAXS complements and extends results obtained with time-resolved optical spectroscopy and X-ray crystallography.

Materials scienceProtein ConformationCrystallography X-RayBiochemistrySensitivity and SpecificityArticlechemistry.chemical_compoundHemoglobinsProtein structureScattering RadiationSpectroscopyWide-angle X-ray scatteringMolecular Biologyprotein dynamics conformational changes hemoglobin myoglobin cytochrome cScatteringMyoglobinX-RaysResolution (electron density)Cytochromes cCell BiologyNanosecondMyoglobinchemistryChemical physicsProtein quaternary structuresense organsBiotechnology
researchProduct

Endothelialization of chitosan porous conduits via immobilization of a recombinant fibronectin fragment (rhFNIII7–10)

2013

Abstract The present study aimed to develop a pre-endothelialized chitosan (CH) porous hollowed scaffold for application in spinal cord regenerative therapies. CH conduits with different degrees of acetylation (DA; 4% and 15%) were prepared, characterized (microstructure, porosity and water uptake) and functionalized with a recombinant fragment of human fibronectin (rhFNIII 7–10 ). Immobilized rhFNIII 7–10 was characterized in terms of amount ( 125 I-radiolabelling), exposure of cell-binding domains (immunofluorescence) and ability to mediate endothelial cell (EC) adhesion and cytoskeletal rearrangement. Functionalized conduits revealed a linear increase in immobilized rhFNIII 7–10 with rhF…

Materials scienceProtein radiolabellingBiomedical EngineeringNeovascularization PhysiologicSpinal cord injuryBiochemistrylaw.inventionBiomaterialsChitosanchemistry.chemical_compoundTissue engineeringlawSpectroscopy Fourier Transform InfraredPolymer chemistryHumansSurface graftingCytoskeletonMolecular BiologyFluorescent DyesChitosanTissue ScaffoldsbiologyThree-dimensional scaffoldsEndothelial CellsDNAGeneral MedicineAdhesionGraftingRecombinant ProteinsFibronectinsProtein Structure TertiaryFibronectinEndothelial stem cellImmobilized ProteinschemistryProtein conformationMicroscopy Electron Scanningbiology.proteinRecombinant DNABiophysicsAdsorptionPorosityBiotechnology
researchProduct

Regulation of Calcium Channel Activity by Lipid Domain Formation in Planar Lipid Bilayers

2003

The sarcoplasmic reticulum channel (ryanodine receptor) from cardiac myocytes was reconstituted into planar lipid bilayers consisting of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) in varying ratios. The channel activity parameters, i.e., open probability and average open time and its resolved short and long components, were determined as a function of POPE mole fraction (X(PE)) at 22.4 degrees C. Interestingly, all of these parameters exhibited a narrow and pronounced peak at X(PE) approximately 0.80. Differential scanning calorimetric measurements on POPE/POPC liposomes with increasing X(PE) indicated that the lipid bilayer ente…

Membrane FluidityProtein ConformationLipid BilayersBiophysicsAnalytical chemistryMolecular Conformation010402 general chemistryElectric Capacitance01 natural sciencesMembrane Potentials03 medical and health scienceschemistry.chemical_compoundStructure-Activity RelationshipProtein structureMembrane MicrodomainsChannels Receptors and TransportersMembrane fluidityLipid bilayer phase behaviorLipid bilayerPOPC030304 developmental biologyMembrane potential0303 health sciencesLiposomeEndoplasmic reticulumPhosphatidylethanolaminesMembranes ArtificialRyanodine Receptor Calcium Release Channel0104 chemical scienceschemistry13. Climate actionBiophysicsPhosphatidylcholineslipids (amino acids peptides and proteins)Calcium ChannelsIon Channel Gating
researchProduct

Patterns of Expression and Organization of Cytokeratin Intermediate Filaments

1985

Cytokeratins are a large multigene family comprising two polypeptide types, i.e. acidic (type I) and basic (type II) ones, which are distinguished on the basis of immunological, peptide mapping, mRNA hybridization, and primary amino acid sequence data. The acidic (type I) cytokeratins can be subdivided into at least two different subtypes on the basis of their carboxy-terminal sequences. Considerable interspecies conservation of sequences exists, even extending to the 3'-non-coding mRNA regions. Different pairs of type I and II cytokeratins show different resistance to dissociation in urea. Sequence differences of the type I cytokeratins containing functional domains may be an explanation o…

Messenger RNANeurofilamentBase SequenceProtein ConformationChemistryGeneral NeuroscienceIntermediate FilamentsRNAMolecular biologyGeneral Biochemistry Genetics and Molecular BiologyMolecular WeightCytokeratinProtein structureHistory and Philosophy of ScienceTetramerAnimalsHumansKeratinsAmino Acid SequenceRNA MessengerIntermediate filamentPeptide sequenceCytoskeletonAnnals of the New York Academy of Sciences
researchProduct

Nitric oxide inhibits the ATPase activity of the chaperone-like AAA+ ATPase CDC48, a target for S-nitrosylation in cryptogein signalling in tobacco c…

2012

NO has important physiological functions in plants, including the adaptative response to pathogen attack. We previously demonstrated that cryptogein, an elicitor of defence reaction produced by the oomycete Phytophthora cryptogea , triggers NO synthesis in tobacco. To decipher the role of NO in tobacco cells elicited by cryptogein, in the present study we performed a proteomic approach in order to identify proteins undergoing S-nitrosylation. We provided evidence that cryptogein induced the S-nitrosylation of several proteins and identified 11 candidates, including CDC48 (cell division cycle 48), a member of the AAA+ ATPase (ATPase associated with various cellular activities) family. In vit…

Models Molecular0106 biological sciencesProtein Conformation[SDV]Life Sciences [q-bio]Nicotiana tabacumATPaseMolecular Sequence DataCell Cycle ProteinsNitric Oxide01 natural sciencesBiochemistrycryptogeinFungal Proteins03 medical and health sciencesValosin Containing ProteinTobaccoAmino Acid Sequencenitric oxide (no)Molecular BiologyPlant Proteins030304 developmental biologyAdenosine Triphosphatases0303 health sciencesbiologyWalker motifsCell BiologyS-Nitrosylationcell division cycle 48 (cdc48)Biotic stressbiology.organism_classificationAAA proteinsProtein Structure TertiaryElicitorBiochemistryChaperone (protein)[SDE]Environmental Sciencesbiology.proteins-nitrosylationplant defence responses010606 plant biology & botanyBiochemical Journal
researchProduct