Search results for "protein conformation"

showing 10 items of 515 documents

Evolution of Snake Venom Disintegrins by Positive Darwinian Selection

2008

PII-disintegrins, cysteine-rich polypeptides broadly distributed in the venoms of geographically diverse species of vipers and rattlesnakes, antagonize the adhesive functions of beta(1) and beta(3) integrin receptors. PII-disintegrins evolved in Viperidae by neofunctionalization of disintegrin-like domains of duplicated PIII-snake venom hemorrhagic metalloproteinase (SVMP) genes recruited into the venom proteome before the radiation of the advanced snakes. Minimization of the gene (loss of introns and coding regions) and the protein structures (successive loss of disulfide bonds) underpins the postduplication divergence of disintegrins. However, little is known about the underlying genetic …

Models MolecularProtein ConformationDisintegrinsMolecular Sequence DataEvolution MolecularNegative selectionPhylogeneticsMolecular evolutionViperidaeGeneticsDisintegrinAnimalsAmino Acid SequenceSelection GeneticMolecular BiologyGenePhylogenyEcology Evolution Behavior and SystematicsGeneticsEvolution of snake venomBinding SitesbiologyPhylogenetic treeMultigene Familybiology.proteinNeofunctionalizationProtein MultimerizationSnake VenomsMolecular Biology and Evolution
researchProduct

Membrane insertion and topology of the TRanslocating chain-Associating Membrane protein (TRAM)

2011

The translocating chain-associating membrane protein (TRAM) is a glycoprotein involved in the translocation of secreted proteins into the endoplasmic reticulum (ER) lumen and in the insertion of integral membrane proteins into the lipid bilayer. As a major step toward elucidating the structure of the functional ER translocation/insertion machinery, we have characterized the membrane integration mechanism and the transmembrane topology of TRAM using two approaches: photocross-linking and truncated C-terminal reporter tag fusions. Our data indicate that TRAM is recognized by the signal recognition particle and translocon components, and suggest a membrane topology with eight transmembrane seg…

Models MolecularProtein ConformationEndoplasmic ReticulumModels BiologicalProtein Structure SecondaryMiceMembranes (Biologia)Structural BiologyAnimalsMolecular BiologyIntegral membrane proteinSignal recognition particleMembrane GlycoproteinsbiologyMembrane transport proteinPeripheral membrane proteinProteïnes de membranaIntracellular MembranesTransloconTransmembrane proteinProtein Structure TertiaryMembrane proteinBiochemistryMembrane topologybiology.proteinBiophysics
researchProduct

Self-assembling of poly(aspartic acid) with bovine serum albumin in aqueous solutions

2016

Abstract Macromolecular co-assemblies built up in aqueous solutions, by using a linear polypeptide, poly(aspartic acid) (PAS), and a globular protein, bovine serum albumin (BSA), have been studied. The main interest was to identify the optimum conditions for an interpenetrated complex formation in order to design materials suitable for biomedical applications, such as drug delivery systems. BSA surface possesses several amino- and carboxylic groups available for covalent modification, and/or bioactive substances attachment. In the present study, mixtures between PAS and BSA were investigated at 37 °C in dilute aqueous solution by viscometry, dynamic light scattering and zeta potential deter…

Models MolecularProtein ConformationGlobular protein02 engineering and technology010402 general chemistry01 natural sciencesBiochemistryDynamic light scatteringStructural BiologyAspartic acidZeta potentialAnimalsBovine serum albuminMolecular Biologychemistry.chemical_classificationAqueous solutionChromatographybiologyChemistryWaterSerum Albumin BovineGeneral MedicineHydrogen-Ion Concentration021001 nanoscience & nanotechnology0104 chemical sciencesSolutionsDrug deliverybiology.proteinCattlePeptides0210 nano-technologyProtein BindingNuclear chemistryMacromoleculeInternational Journal of Biological Macromolecules
researchProduct

Ligand-binding domain determines endoplasmic reticulum exit of AMPA receptors.

2010

AMPA receptors (AMPARs) are tetrameric ion channels that mediate rapid glutamate signaling in neurons and many non-neuronal cell types. Endoplasmic reticulum (ER) quality control mechanisms permit only correctly folded functional receptors to be delivered to the cell surface. We analyzed the biosynthetic maturation and transport of all 12 GluA1–4 subunit splice variants as homomeric receptors and observed robust isoform-dependent differences in ER exit competence and surface expression. In contrast to inefficient ER exit of both GluA3 splice forms and the flop variants of GluA1 and GluA4, prominent plasma membrane expression was observed for the other AMPAR isoforms. Surprisingly, deletion …

Models MolecularProtein ConformationImmunoblottingMolecular Sequence DataAMPA receptorBiologymedicine.disease_causeEndoplasmic ReticulumLigandsBiochemistryCell membrane03 medical and health sciences0302 clinical medicineNeurobiologyProtein targetingChlorocebus aethiopsmedicineHomomericAnimalsHumansProtein IsoformsAmino Acid SequenceReceptors AMPAReceptorMolecular BiologyIon channel030304 developmental biology0303 health sciencesBinding SitesSequence Homology Amino AcidEndoplasmic reticulumCell MembraneCell BiologyCell biologyTransport proteinProtein Structure TertiaryAlternative SplicingProtein SubunitsProtein Transportmedicine.anatomical_structureHEK293 CellsMicroscopy FluorescenceCOS CellsProtein Multimerization030217 neurology & neurosurgeryThe Journal of biological chemistry
researchProduct

Cytochrome c in a Dry Trehalose Matrix: Structural and Dynamical Effects Probed by X-Ray Absorption Spectroscopy

2007

AbstractWe report on the structure and dynamics of the Fe ligand cluster of reduced horse heart cytochrome c in solution, in a dried polyvinyl alcohol (PVA) film, and in two trehalose matrices characterized by different contents of residual water. The effect of the solvent/matrix environment was studied at room temperature using Fe K-edge x-ray absorption fine structure (XAFS) spectroscopy. XAFS data were analyzed by combining ab initio simulations and multi-parameter fitting in an attempt to disentangle structural from disorder parameters. Essentially the same structural and disorder parameters account adequately for the XAFS spectra measured in solution, both in the absence and in the pre…

Models MolecularProtein ConformationIronAb initioBiophysicsHemechemistry.chemical_compoundProtein structureImidazoleAnimalsHistidineHorsesSpectroscopyX-ray absorption spectroscopyMyocardiumSpectrum AnalysisX-RaysProteinsCytochromes cTrehaloseTrehaloseX-ray absorption fine structureSolutionsCrystallographychemistryPolyvinyl AlcoholAbsorption (chemistry)Biophysical Journal
researchProduct

QM/MM calculations of kinetic isotope effects in the chorismate mutase active site.

2003

Kinetic isotope effects have been computed for the Claisen rearrangement of chorismate to prephenate in aqueous solution and in the active site of chorismate mutase from B. subtilus. These included primary 13C and 18O and secondary 3H effects for substitutions at the bond-making and bond-breaking positions. The initial structures of the putative stationary points on the potential energy surface, required for the calculations of isotope effects using the CAMVIB/CAMISO programs, have been selected from hybrid QM/MM molecular dynamical simulations using the DYNAMO program. Refinement of the reactant complex and transition-state structures has been carried out by means of AM1/CHARMM24/TIP3P cal…

Models MolecularProtein ConformationKinetic schemeBiochemistryCatalysisQM/MMIsotopesComputational chemistryKinetic isotope effectComputer SimulationPhysical and Theoretical ChemistryAqueous solutionBinding SitesbiologyChemistryOrganic ChemistryActive siteClaisen rearrangementSolutionsKineticsPotential energy surfacebiology.proteinChorismate mutaseQuantum TheoryThermodynamicsGasesSoftwareBacillus subtilisChorismate MutaseOrganicbiomolecular chemistry
researchProduct

Concentration dependent effects of commonly used pesticides on activation versus inhibition of the quince (Cydonia Oblonga) polyphenol oxidase

2009

Polyphenol oxidase (PPO) catalyzes the oxidation of o-diphenols to their respective quinones which undergo autopolymerization and form dark pigments. The interaction of PPO with various substrates and effectors remains the focus of intensive investigations due to the enzyme's key role in pigments biosynthesis including animal melanogenesis and fruit/fungi enzymatic browning. In this study, the effect of a range of commonly used pesticides on the enzyme activity has been evaluated using the purified quince (Cydonia oblonga Miller) PPO. The biochemical analysis showed that, in the presence of high pesticide concentrations, the enzyme was competitively inhibited, particularly with benomyl, car…

Models MolecularProtein ConformationMolecular Sequence DataCrystallography X-RayToxicologyPolyphenol oxidasechemistry.chemical_compoundCarbarylParathion methylAmino Acid SequenceEnzyme InhibitorsIpomoea batatasPesticidesCatechol oxidaseRosaceaeDose-Response Relationship DrugbiologyReverse Transcriptase Polymerase Chain ReactionComputational BiologyGeneral MedicineNucleic acid amplification techniqueEnzyme assayEnzyme ActivationKineticsParathionchemistryBiochemistryPolyphenolFruitbiology.proteinElectrophoresis Polyacrylamide GelNucleic Acid Amplification TechniquesCatechol OxidaseFood ScienceFood and Chemical Toxicology
researchProduct

The Parkinson Disease Gene LRRK2: Evolutionary and Structural Insights

2006

Mutations in the human leucine-rich repeat kinase 2 (LRRK2) gene are associated with both familial and sporadic Parkinson disease (PD). LRRK2 belongs to a gene family known as Roco. Roco genes encode for large proteins with several protein domains. Particularly, all Roco proteins have a characteristic GTPase domain, named Roc, plus a domain of unknown function called COR. In addition, LRRK2 and several other Roco proteins also contain a protein kinase domain. In this study, I use a combination of phylogenetic and structural analyses of the COR, Roc, and kinase domains present in Roco proteins to describe the origin and evolutionary history of LRRK2. Phylogenetic analyses using these domains…

Models MolecularProtein ConformationMolecular Sequence DataProtein domainGTPaseProtein Serine-Threonine KinasesBiologyLeucine-Rich Repeat Serine-Threonine Protein Kinase-2MAP3K7SH3 domainGTP PhosphohydrolasesEvolution MolecularGeneticsAnimalsHumansDictyosteliumAmino Acid Sequencec-RafMolecular BiologyPhylogenyEcology Evolution Behavior and SystematicsGeneticsSequence Homology Amino AcidParkinson DiseaseLRRK2Protein Structure Tertiarynervous system diseasesDisease Models AnimalProtein kinase domainRabProtein KinasesMolecular Biology and Evolution
researchProduct

Structural basis for the sheddase function of human meprin β metalloproteinase at the plasma membrane.

2012

Ectodomain shedding at the cell surface is a major mechanism to regulate the extracellular and circulatory concentration or the activities of signaling proteins at the plasma membrane. Human meprin β is a 145-kDa disulfide-linked homodimeric multidomain type-I membrane metallopeptidase that sheds membrane-bound cytokines and growth factors, thereby contributing to inflammatory diseases, angiogenesis, and tumor progression. In addition, it cleaves amyloid precursor protein (APP) at the β-secretase site, giving rise to amyloidogenic peptides. We have solved the X-ray crystal structure of a major fragment of the meprin β ectoprotein, the first of a multidomain oligomeric transmembrane sheddase…

Models MolecularProtein ConformationPlasma protein bindingCell membrane03 medical and health sciencesProtein structureZymogenAmyloid precursor proteinmedicineHumans030304 developmental biology0303 health sciencesMultidisciplinaryCrystallographybiologyChemistry030302 biochemistry & molecular biologyCell MembraneMetalloendopeptidasesSheddaseBiological SciencesTransmembrane protein3. Good healthCell biologyProtein Structure Tertiarymedicine.anatomical_structureBiochemistryEctodomainbiology.proteinDimerizationProtein BindingProceedings of the National Academy of Sciences of the United States of America
researchProduct

Analysis of the structural quality of the CASD-NMR 2013 entries.

2015

We performed a comprehensive structure validation of both automated and manually generated structures of the 10 targets of the CASD-NMR-2013 effort. We established that automated structure determination protocols are capable of reliably producing structures of comparable accuracy and quality to those generated by a skilled researcher, at least for small, single domain proteins such as the ten targets tested. The most robust results appear to be obtained when NOESY peak lists are used either as the primary input data or to augment chemical shift data without the need to manually filter such lists. A detailed analysis of the long-range NOE restraints generated by the different programs from t…

Models MolecularProtein ConformationProteinProteinsReproducibility of ResultsQualityArticleNMRBlind testingCASD-NMRValidationNuclear Magnetic Resonance BiomolecularStructure determinationSoftwareNOEJournal of biomolecular NMR
researchProduct