Search results for "protein folding"

showing 10 items of 196 documents

Hsp90 dictates viral sequence space by balancing the evolutionary tradeoffs between protein stability, aggregation and translation rate

2017

AbstractAcquisition of mutations is central to evolution but the detrimental effects of most mutations on protein folding and stability limit protein evolvability. Molecular chaperones, which suppress aggregation and facilitate polypeptide folding, are proposed to promote sequence diversification by buffering destabilizing mutations. However, whether and how chaperones directly control protein evolution remains poorly understood. Here, we examine the effect of reducing the activity of the key eukaryotic chaperone Hsp90 on poliovirus evolution. Contrary to predictions of a buffering model, inhibiting Hsp90 increases population sequence diversity and promotes accumulation of mutations reducin…

Geneticseducation.field_of_studybiologyPopulationComputational biologyProtein aggregationHsp90EvolvabilityChaperone (protein)biology.proteinProtein foldingSynonymous substitutioneducationBiogenesis
researchProduct

The GlpF residue Trp219 is part of an amino-acid cluster crucial for aquaglyceroporin oligomerization and function

2018

The vestibule loop regions of aquaglyceroporins are involved in accumulation of glycerol inside the channel pore. Even though most loop regions do not show high sequence similarity among aquaglyceroporins, loop E is highly conserved in aquaglyceroporins, but not in members of the homologous aquaporins. Specifically, a tryptophan residue is extremely conserved within this loop. We have investigated the role of this residue (Trp219) that deeply protrudes into the protein and potentially interacts with adjacent loops, using the E. coli aqualgyeroporin GlpF as a model. Replacement of Trp219 affects the activity of GlpF and impairs the stability of the tetrameric protein. Furthermore, we have id…

GlycerolModels Molecular0301 basic medicineProtein ConformationTetrameric proteinBiophysicsAquaporinAquaporinsBiochemistry03 medical and health sciencesResidue (chemistry)TetramerEscherichia coliAmino Acidschemistry.chemical_classification030102 biochemistry & molecular biologyProtein StabilityChemistryEscherichia coli ProteinsTryptophanTryptophanCell BiologyAmino acid030104 developmental biologyAquaglyceroporinsBiochemistryMutationBiophysicsProtein foldingProtein MultimerizationAquaglyceroporinsBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Local dynamic properties of the heme pocket in native and solvent-induced molten-globule-like states of cytochrome c

2002

We report the Soret absorption band, down to cryogenic temperature, of native and molten-globule-like state of horse heart cytochrome c. The band profile is analyzed in terms of vibronic coupling of the heme normal modes to the electronic transition in the framework of the Franck-Condon approximation. From the temperature dependence of the Gaussian broadening and of the peak position, we obtain information on the 'bath' of low frequency harmonic motions of the heme group within the heme pocket. The reported data indicate that, compared to the native state, the less rigid tertiary structure of the molten globule is reflected in a higher flexibility of the heme pocket and in greater conformat…

GlycerolProtein FoldingHot TemperatureCytochromeProtein ConformationBiophysicsCytochrome c GroupHemeProtein dynamicsBiochemistrychemistry.chemical_compoundMolten-globule proteinsNative stateSettore BIO/10HemeBinding SitesbiologySpectrum AnalysisProtein dynamicsOrganic ChemistryMolten globuleOptical absorption spectroscopyCrystallographyVibronic couplingchemistryAbsorption bandbiology.proteinMolten-globule proteins; Optical absorption spectroscopy; Protein dynamicsProtein foldingMathematics
researchProduct

Probing a Polar Cluster in the Retinal Binding Pocket of Bacteriorhodopsin by a Chemical Design Approach

2012

Bacteriorhodopsin has a polar cluster of amino acids surrounding the retinal molecule, which is responsible for light harvesting to fuel proton pumping. From our previous studies, we have shown that threonine 90 is the pivotal amino acid in this polar cluster, both functionally and structurally. In an attempt to perform a phenotype rescue, we have chemically designed a retinal analogue molecule to compensate the drastic effects of the T90A mutation in bacteriorhodopsin. This analogue substitutes the methyl group at position C(13) of the retinal hydrocarbon chain by and ethyl group (20-methyl retinal). We have analyzed the effect of reconstituting the wild-type and the T90A mutant apoprotein…

Halobacterium salinarumModels MolecularProtein FoldingProtein Denaturation01 natural sciencesBiotecnologiaBiochemistryBiophysics Simulationschemistry.chemical_compoundSensory RhodopsinsHalobacterium salinarum0303 health sciencesMultidisciplinarybiologyProtein StabilityQRTemperatureUltraviolet-visible spectroscopyThermal stabilityBacterial BiochemistryChemistryBiochemistryBacteriorhodopsinsRetinaldehydeMedicineProtonsResearch ArticleSteric effectsHydrogen bondingBioquímicaProtein StructureScienceRetinal bindingBiophysics010402 general chemistryMicrobiologyPhosphates03 medical and health sciencesBiology030304 developmental biologyAspartic AcidBinding SitesAdaptation OcularOrganic ChemistryOrganic SynthesisProteinsChromoproteinsRetinalBacteriorhodopsinBacteriologyBiological TransportChromophorebiology.organism_classification0104 chemical sciencesTransmembrane ProteinschemistryRetinaldehydeBiophysicsbiology.proteinMutant ProteinsPLoS ONE
researchProduct

Chaperones Involved in Hepatitis B Virus Morphogenesis

1999

Little is known about host cell factors necessary for hepatitis B virus (HBV) assembly which involves envelopment of cytosolic nucleocapsids by the S, M and L transmembrane viral envelope proteins and subsequent budding into intraluminal cisternae. Central to virogenesis is the L protein that mediates hepatocyte receptor binding and envelopment of capsids. To serve these topologically conflicting roles, L protein exhibits an unusual dual membrane topology, disposing its N-terminal preS domain inside and outside of the virion lipid envelope. The mixed topology is achieved by posttranslational preS translocation of about half of the L protein molecules across a post-endoplasmic reticulum memb…

Hepatitis B virusProtein FoldingCalnexinHSC70 Heat-Shock ProteinsClinical BiochemistryBiochemistryViral Matrix ProteinsCytosolViral Envelope ProteinsViral envelopeCalnexinMorphogenesisAnimalsHumansHSP70 Heat-Shock ProteinsProtein PrecursorsMolecular BiologyHepatitis B Surface AntigensViral matrix proteinbiologyChemistryCalcium-Binding ProteinsHSC70 Heat-Shock ProteinsBiological TransportVirologyTransmembrane proteinCell biologyProtein BiosynthesisMembrane topologyChaperone (protein)COS Cellsbiology.proteinProtein foldingCarrier ProteinsMolecular ChaperonesBiological Chemistry
researchProduct

Cryptogein affects expression of alpha3, alpha6 and beta1 20S proteasome subunits encoding genes in tobacco.

2001

Twelve a and b 20S proteasome subunits cDNAs showing 70–82% identity with the corresponding genes in Arabidopsis or rice, and features of eukaryotic proteasome subunits were cloned in tobacco. Only b1-tcI 7, a3 and a6, 20S proteasome subunits encoding genes were up-regulated by cryptogein, a proteinaceous elicitor of plant defence reactions. These results led to the hypothesis that the activation of b1-tcI 7, a3 and a6 could induce a specific proteolysis involved in the hypersensitive response and systemic acquired resistance monitored by cryptogein. In eukaryotes, the 26S proteasome is the central multicatalytic proteinase complex comprising two subcomplexes: the 20S core particle that per…

Hypersensitive responseProteasome Endopeptidase ComplexPhysiologyProtein subunitProteolysisMolecular Sequence DataPlant ScienceGenes PlantGene Expression Regulation EnzymologicFungal ProteinsGene Expression Regulation PlantMultienzyme ComplexesArabidopsisGene expressionTobaccomedicineAmino Acid SequenceGenePlant Diseasesbiologymedicine.diagnostic_testAlgal Proteinsbiology.organism_classificationPlants Genetically ModifiedCysteine EndopeptidasesProteasomeBiochemistryProtein foldingJournal of experimental botany
researchProduct

Molecular basis of filamin a-filGAP interaction and its impairment in congenital disorders associated with filamin a mutations

2008

Background Mutations in filamin A (FLNa), an essential cytoskeletal protein with multiple binding partners, cause developmental anomalies in humans. Methodology/Principal Findings We determined the structure of the 23rd Ig repeat of FLNa (IgFLNa23) that interacts with FilGAP, a Rac-specific GTPase-activating protein and regulator of cell polarity and movement, and the effect of the three disease-related mutations on this interaction. A combination of NMR structural analysis and in silico modeling revealed the structural interface details between the C and D β-strands of the IgFLNa23 and the C-terminal 32 residues of FilGAP. Mutagenesis of the predicted key interface residues confirmed the b…

ImmunoprecipitationFilaminsMolecular Sequence Dataeducationlcsh:MedicineComputational Biology/Protein Structure PredictionBiologyFilaminCell Biology/Cell SignalingCongenital AbnormalitiesBiochemistry/Protein Folding03 medical and health sciences0302 clinical medicineProtein structureContractile ProteinsCell Biology/CytoskeletonFLNAHumansFLNBFLNCAmino Acid Sequencelcsh:Science030304 developmental biologyGenetics0303 health sciencesMultidisciplinaryBinding SitesMolecular StructureSequence Homology Amino AcidPoint mutationlcsh:RGTPase-Activating ProteinsMicrofilament Proteins3. Good healthBiochemistry/BioinformaticsMutationProtein foldinglcsh:Q118 Biological sciences030217 neurology & neurosurgeryResearch Article
researchProduct

Oxidation Enhances Human Serum Albumin Thermal Stability and Changes the Routes of Amyloid Fibril Formation

2014

Oxidative damages are linked to several aging-related diseases and are among the chemical pathways determining protein degradation. Specifically, interplay of oxidative stress and protein aggregation is recognized to have a link to the loss of cellular function in pathologies like Alzheimer's and Parkinson's diseases. Interaction between protein and reactive oxygen species may indeed induce small changes in protein structure and lead to the inhibition/modification of protein aggregation process, potentially determining the formation of species with different inherent toxicity. Understanding the temperate relationship between these events can be of utmost importance in unraveling the molecul…

Macromolecular AssembliesProtein Foldinglcsh:MedicineProtein aggregationBiochemistryPhysical Chemistry01 natural sciencesProtein Structure SecondaryProtein structurePathologylcsh:Sciencechemistry.chemical_classification0303 health sciencesMultidisciplinarybiologyProtein StabilityChemistryPhysicsNeurodegenerationTemperatureNeurodegenerative DiseasesHuman serum albuminChemistryNeurologyBiochemistryMedicineOxidation-ReductionMolecular PathologyResearch Articlemedicine.drugAmyloidBiophysicsSerum albuminProtein degradation010402 general chemistry03 medical and health sciencesDiagnostic MedicinemedicineHumansProtein InteractionsBiologySerum Albumin030304 developmental biologyAmyloid Fluorescence Oxidation Protein aggregation Spectoscopy Light Scattering Serum AlbuminReactive oxygen specieslcsh:RProteinsHydrogen Peroxidemedicine.diseaseProtein tertiary structure0104 chemical sciencesKineticsbiology.proteinlcsh:QProtein MultimerizationGeneral Pathology
researchProduct

Decoding the Folding of Burkholderia glumae Lipase: Folding Intermediates En Route to Kinetic Stability

2012

The lipase produced by Burkholderia glumae folds spontaneously into an inactive near-native state and requires a periplasmic chaperone to reach its final active and secretion-competent fold. The B. glumae lipase-specific foldase (Lif) is classified as a member of the steric-chaperone family of which the propeptides of alpha-lytic protease and subtilisin are the best known representatives. Steric chaperones play a key role in conferring kinetic stability to proteins. However, until present there was no solid experimental evidence that Lif-dependent lipases are kinetically trapped enzymes. By combining thermal denaturation studies with proteolytic resistance experiments and the description of…

Macromolecular AssembliesProtein StructureProtein FoldingBurkholderiaProtein ConformationStereochemistryBiophysicslcsh:MedicineBiochemistryProtein Chemistrybacterial lipasemolten globuleBacterial ProteinsNative stateBurkholderia glumaeLipaseProtein Interactionslcsh:ScienceBiologyMultidisciplinarybiologylipase-specific foldasePhysicslcsh:RSubtilisinProteinsLipasebiology.organism_classificationMolten globuleEnzymesChaperone ProteinsKineticsBiochemistryChaperone (protein)Enzyme StructureProteolysisFoldasebiology.proteinlcsh:Qsteric chaperoneProtein foldingnear-native folding intermediateResearch ArticleMolecular Chaperones
researchProduct

Acetylcholine-binding protein in the hemolymph of the planorbid snail Biomphalaria glabrata is a pentagonal dodecahedron (60 subunits).

2012

Nicotinic acetylcholine receptors (nAChR) play important neurophysiological roles and are of considerable medical relevance. They have been studied extensively, greatly facilitated by the gastropod acetylcholine-binding proteins (AChBP) which represent soluble structural and functional homologues of the ligand-binding domain of nAChR. All these proteins are ring-like pentamers. Here we report that AChBP exists in the hemolymph of the planorbid snail Biomphalaria glabrata (vector of the schistosomiasis parasite) as a regular pentagonal dodecahedron, 22 nm in diameter (12 pentamers, 60 active sites). We sequenced and recombinantly expressed two ∼25 kDa polypeptides (BgAChBP1 and BgAChBP2) wit…

Macromolecular AssembliesProtein StructureProtein FoldingScienceBiophysicsBiochemistryProtein ChemistryHomology (biology)Ion ChannelsProtein Structure Secondarylaw.inventionDodecahedronAcetylcholine bindinglawHemolymphHemolymphMacromolecular Structure AnalysisBiomphalaria glabrataAnimal PhysiologyAnimalsBiomacromolecule-Ligand InteractionsBiologyAcetylcholine receptorMultidisciplinaryHemoproteinsbiologyBiomphalariaQRActive siteProteinsComputational BiologyAnatomybiology.organism_classificationRecombinant ProteinsAcetylcholineProtein Structure TertiaryBiochemistryAcetylcholine Receptorsbiology.proteinRecombinant DNAMedicineCarrier ProteinsZoologyResearch ArticlePLoS ONE
researchProduct