6533b859fe1ef96bd12b80dd

RESEARCH PRODUCT

Probing a Polar Cluster in the Retinal Binding Pocket of Bacteriorhodopsin by a Chemical Design Approach

Susana AlvarezEsteve PadrósRosana Simón-vázquezVíctor A. Lórenz-fonfríaJosé Luis BourdelandeAlex Perálvarez-marínMarta DomínguezAngel R. De Lera

subject

Halobacterium salinarumModels MolecularProtein FoldingProtein Denaturation01 natural sciencesBiotecnologiaBiochemistryBiophysics Simulationschemistry.chemical_compoundSensory RhodopsinsHalobacterium salinarum0303 health sciencesMultidisciplinarybiologyProtein StabilityQRTemperatureUltraviolet-visible spectroscopyThermal stabilityBacterial BiochemistryChemistryBiochemistryBacteriorhodopsinsRetinaldehydeMedicineProtonsResearch ArticleSteric effectsHydrogen bondingBioquímicaProtein StructureScienceRetinal bindingBiophysics010402 general chemistryMicrobiologyPhosphates03 medical and health sciencesBiology030304 developmental biologyAspartic AcidBinding SitesAdaptation OcularOrganic ChemistryOrganic SynthesisProteinsChromoproteinsRetinalBacteriorhodopsinBacteriologyBiological TransportChromophorebiology.organism_classification0104 chemical sciencesTransmembrane ProteinschemistryRetinaldehydeBiophysicsbiology.proteinMutant Proteins

description

Bacteriorhodopsin has a polar cluster of amino acids surrounding the retinal molecule, which is responsible for light harvesting to fuel proton pumping. From our previous studies, we have shown that threonine 90 is the pivotal amino acid in this polar cluster, both functionally and structurally. In an attempt to perform a phenotype rescue, we have chemically designed a retinal analogue molecule to compensate the drastic effects of the T90A mutation in bacteriorhodopsin. This analogue substitutes the methyl group at position C(13) of the retinal hydrocarbon chain by and ethyl group (20-methyl retinal). We have analyzed the effect of reconstituting the wild-type and the T90A mutant apoproteins with all-trans-retinal and its 20-methyl derivative (hereafter, 13-ethyl retinal). Biophysical characterization indicates that recovering the steric interaction between the residue 90 and retinal, eases the accommodation of the chromophore, however it is not enough for a complete phenotype rescue. The characterization of these chemically engineered chromoproteins provides further insight into the role of the hydrogen bond network and the steric interactions involving the retinal binding pocket in bacteriorhodopsin and other microbial sensory rhodopsins.

10.1371/journal.pone.0042447http://europepmc.org/articles/PMC3411786