0000000000069650

AUTHOR

Rosana Simón-vázquez

0000-0001-8963-6547

showing 4 related works from this author

GraftFast Surface Engineering to Improve MOF Nanoparticles Furtiveness

2018

International audience; Controlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trime…

Nanoparticle02 engineering and technologyPolyethylene glycol[CHIM.THER]Chemical Sciences/Medicinal ChemistrySurface engineering010402 general chemistry01 natural sciencesBiomaterialschemistry.chemical_compoundAdsorptionPEG ratio[CHIM]Chemical SciencesGeneral Materials ScienceComputingMilieux_MISCELLANEOUSChemistry[CHIM.ORGA]Chemical Sciences/Organic chemistryGeneral Chemistry[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyGrafting0104 chemical sciencesChemical engineeringSurface modification0210 nano-technologySelectivityBiotechnology
researchProduct

Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers

2017

Nanometric biocompatible Metal-Organic Frameworks (nanoMOFs) are promising candidates for drug delivery. Up to now, most studies have targeted the intravenous route, related to pain and severe complications; whereas nanoMOFs for oral administration, a commonly used non-invasive and simpler route, remains however unexplored. We propose here the biofriendly preparation of a suitable oral nanocarrier based on the benchmarked biocompatible mesoporous iron(III) trimesate nanoparticles coated with the bioadhesive polysaccharide chitosan (CS). This method does not hamper the textural/structural properties and the sorption/release abilities of the nanoMOFs upon surface engineering. The interaction …

Materials scienceBiocompatibilityBioadhesiveQuímica organometàl·licaNanoparticleAdministration OralNanotechnology02 engineering and technologySurface engineering010402 general chemistry01 natural sciencesFerric CompoundsArticleChitosanchemistry.chemical_compoundHumansChitosanMultidisciplinaryNanotecnologia021001 nanoscience & nanotechnology3. Good health0104 chemical sciencesDrug LiberationKineticsLysergic Acid DiethylamideEnterocyteschemistryDrug deliveryNanoparticlesNanocarriersCaco-2 Cells0210 nano-technologyMesoporous material
researchProduct

Metal-Organic Framework Surface Functionalization: GraftFast Surface Engineering to Improve MOF Nanoparticles Furtiveness (Small 40/2018)

2018

International audience

Materials scienceNanoparticleNanotechnology[CHIM.MATE]Chemical Sciences/Material chemistry02 engineering and technologyGeneral ChemistrySurface engineering010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesBiomaterialsSurface modificationGeneral Materials ScienceMetal-organic framework0210 nano-technologyComputingMilieux_MISCELLANEOUSBiotechnologyPegylated nanoparticlesSmall
researchProduct

Probing a Polar Cluster in the Retinal Binding Pocket of Bacteriorhodopsin by a Chemical Design Approach

2012

Bacteriorhodopsin has a polar cluster of amino acids surrounding the retinal molecule, which is responsible for light harvesting to fuel proton pumping. From our previous studies, we have shown that threonine 90 is the pivotal amino acid in this polar cluster, both functionally and structurally. In an attempt to perform a phenotype rescue, we have chemically designed a retinal analogue molecule to compensate the drastic effects of the T90A mutation in bacteriorhodopsin. This analogue substitutes the methyl group at position C(13) of the retinal hydrocarbon chain by and ethyl group (20-methyl retinal). We have analyzed the effect of reconstituting the wild-type and the T90A mutant apoprotein…

Halobacterium salinarumModels MolecularProtein FoldingProtein Denaturation01 natural sciencesBiotecnologiaBiochemistryBiophysics Simulationschemistry.chemical_compoundSensory RhodopsinsHalobacterium salinarum0303 health sciencesMultidisciplinarybiologyProtein StabilityQRTemperatureUltraviolet-visible spectroscopyThermal stabilityBacterial BiochemistryChemistryBiochemistryBacteriorhodopsinsRetinaldehydeMedicineProtonsResearch ArticleSteric effectsHydrogen bondingBioquímicaProtein StructureScienceRetinal bindingBiophysics010402 general chemistryMicrobiologyPhosphates03 medical and health sciencesBiology030304 developmental biologyAspartic AcidBinding SitesAdaptation OcularOrganic ChemistryOrganic SynthesisProteinsChromoproteinsRetinalBacteriorhodopsinBacteriologyBiological TransportChromophorebiology.organism_classification0104 chemical sciencesTransmembrane ProteinschemistryRetinaldehydeBiophysicsbiology.proteinMutant ProteinsPLoS ONE
researchProduct