6533b7cffe1ef96bd1258729
RESEARCH PRODUCT
GraftFast Surface Engineering to Improve MOF Nanoparticles Furtiveness
Patricia HorcajadaPatricia HorcajadaRuxandra GrefThomas BerthelotÁFrica González-fernándezChristian SerreChristian SerrePatrick CouvreurMaria C. AsensioTeresa Simón-yarzaTeresa Simón-yarzaElena BellidoJosé AvilaRosana Simón-vázquezTania HidalgoMónica Giménez-marquésMónica Giménez-marquésMónica Giménez-marquéssubject
Nanoparticle02 engineering and technologyPolyethylene glycol[CHIM.THER]Chemical Sciences/Medicinal ChemistrySurface engineering010402 general chemistry01 natural sciencesBiomaterialschemistry.chemical_compoundAdsorptionPEG ratio[CHIM]Chemical SciencesGeneral Materials ScienceComputingMilieux_MISCELLANEOUSChemistry[CHIM.ORGA]Chemical Sciences/Organic chemistryGeneral Chemistry[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyGrafting0104 chemical sciencesChemical engineeringSurface modification0210 nano-technologySelectivityBiotechnologydescription
International audience; Controlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL-100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF–PEG interaction is deeply investigated using high-resolution soft X-ray spectroscopy. Finally, a cell penetration study using the radio-labeled antitumor agent gemcitabine monophosphate (3H-GMP)-loaded MIL-100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness.
year | journal | country | edition | language |
---|---|---|---|---|
2018-08-09 |