0000000000020173

AUTHOR

Mónica Giménez-marqués

0000-0002-4931-5711

showing 77 related works from this author

GraftFast Surface Engineering to Improve MOF Nanoparticles Furtiveness

2018

International audience; Controlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trime…

Nanoparticle02 engineering and technologyPolyethylene glycol[CHIM.THER]Chemical Sciences/Medicinal ChemistrySurface engineering010402 general chemistry01 natural sciencesBiomaterialschemistry.chemical_compoundAdsorptionPEG ratio[CHIM]Chemical SciencesGeneral Materials ScienceComputingMilieux_MISCELLANEOUSChemistry[CHIM.ORGA]Chemical Sciences/Organic chemistryGeneral Chemistry[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyGrafting0104 chemical sciencesChemical engineeringSurface modification0210 nano-technologySelectivityBiotechnology
researchProduct

A SIM-MOF: Three-Dimensional Organisation of Single-Ion Magnets with Anion-Exchange Capabilities

2014

The formation of a metal-organic framework (MOF) with nodes that have single-molecule magnet (SMM) behaviour has been achieved by using mononuclear lanthanoid analogues, also known as single-ion magnets (SIMs), which enormously simplifies the challenging issue of making SMM-MOFs. Here we present a rational design of a family of MOFs, [Ln(bipyNO)4](TfO)3⋅x solvent (Ln=Tb (1); Dy (2); Ho (3); Er (4); TfO=triflate), in which the lanthanoid centres have an square-antiprismatic coordination environment suitable for SIM behaviour. Magnetic measurements confirm the existence of slow magnetic relaxation typical of SMMs, which has been rationalised by means of a radial effective charge model. In add…

LanthanideSingle ionIon exchangeChemistryOrganic ChemistryRational designNanotechnologyGeneral ChemistryCatalysisEffective nuclear chargeCrystallographyMagnetMetal-organic frameworkTrifluoromethanesulfonateChemistry - A European Journal
researchProduct

Design of stable mixed-metal MIL-101(Cr/Fe) materials with enhanced catalytic activity for the Prins reaction

2020

[EN] This work highlights the benefit of designing mixed-metal (Cr/Fe) MOFs for enhanced chemical stability and catalytic activity. A robust and stable mixed-metal MIL-101(Cr/Fe) was prepared through a HF-free direct hydrothermal route with Fe(3+)content up to 21 wt%. The incorporation of Fe(3+)cations in the crystal structure was confirmed by(57)Fe Mossbauer spectrometry. The catalytic performance of the mixed metal MIL-101(Cr/Fe) was evaluated in the Prins reaction. MIL-101(Cr/Fe) exhibited a higher catalytic activity compared to MIL-101(Cr), improved chemical stability compared to MIL-101(Fe) and a higher catalytic activity for bulky substrates compared to MIL-100(Fe).In situinfra-red sp…

Crystal structure010402 general chemistry01 natural sciencesHydrothermal circulationIonCatalysisQUIMICA ORGANICAQUIMICA ANALITICA[CHIM]Chemical SciencesGeneral Materials ScienceLewis acids and bases[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]MaterialsComputingMilieux_MISCELLANEOUSMossbauer spectrometry[PHYS]Physics [physics]010405 organic chemistryRenewable Energy Sustainability and the EnvironmentChemistryGeneral ChemistryPrins reaction0104 chemical sciencesChemical stabilityQuímica orgànicaNuclear chemistryJournal of Materials Chemistry A
researchProduct

ChemInform Abstract: Giant Crown-Shaped Polytungstate Formed by Self-Assembly of CeIII-Stabilized Dilacunary Keggin Fragments.

2011

Single crystals of Na40K6[Ni(H2O)6]3 [K@K7Ce24Ge12W120O456 (OH)12(H2O)64]· 178H2O are synthesized by addition of KCl to a NaOAc/AcOH buffer solution containing Ce(NO3)3, GeO2, Na2WO4, and NiCl2 followed by slow evaporation at room temperature (24% yield).

chemistry.chemical_compoundchemistryYield (chemistry)Inorganic chemistryCrown (botany)EvaporationGeneral MedicineBuffer solutionSelf-assemblyChemInform
researchProduct

Plasmon-assisted spin transition in gold nanostar@spin crossover heterostructures

2021

Aquí presentamos el diseño de nanopartículas core@shell formadas por un núcleo de nanoestrella de Au metálico y una capa cruzada de espín basada en el polímero de coordinación [Fe(Htrz)2(trz)](BF4). Este procedimiento es general y se ha extendido a otras morfologías metálicas (nanovarillas, nanotriángulos). Gracias al efecto fototérmico derivado de las propiedades plasmónicas de la nanoestrella de Au, el 60 % de los centros de hierro experimentan una transición de espín térmico dentro de la histéresis térmica provocada por una irradiación de baja intensidad con un láser de 808 nm. En comparación con otras morfologías de Au, la gran ventaja de la forma de nanoestrella surge de los puntos cal…

NanostructureMaterials sciencebusiness.industryUNESCO::QUÍMICAPhotothermal effectSpin transitionNanoparticleHeterojunction02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences7. Clean energy0104 chemical sciencesSpin crossoverMaterials ChemistryOptoelectronicsNanorod0210 nano-technologybusinessPlasmon
researchProduct

Functionalization using biocompatible carboxylated cyclodextrins of iron-based nanoMIL-100

2021

9 pags., 7 figs., 1 tab.

Auger electron spectroscopyCyclodextrinsCyclodextrin applicationsNanoparticleMetal-organic frameworksInorganic ChemistryThermogravimetrychemistry.chemical_compoundMonomerchemistryPolymer chemistrypolycyclic compoundsMaterials ChemistrySurface modified nanoparticlesMössbauerSurface modificationCarboxylatePhysical and Theoretical ChemistryPorosityLinkerMaterials
researchProduct

Exploring the catalytic performance of a series of bimetallic MIL-100(Fe, Ni) MOFs

2019

[EN] A series of mixed-metal Fe-III/Ni-II metal-organic frameworks (MOFs) of the MIL-100 type containing different metal ratios have been synthesized de novo, following an approach that requires tuning of the Fe-III/Ni-II reactivity. The resulting heterometallic MIL-100(Fe, Ni) materials maintain thermal, chemical and structural stability with respect to the parent MIL-100(Fe) MOF as can be deduced from various techniques. The nature and the oxidation state of the accessible metal cations have been evaluated by in situ infrared spectroscopy and extended X-ray absorption fine structure measurements. The obtained mixed-metal MOFs and the parent material have been evaluated as heterogeneous ca…

Renewable Energy Sustainability and the EnvironmentfungiAcid-catalyzed reactionsExtended X ray absorption fine structure spectroscopy02 engineering and technologyGeneral Chemistry[CHIM.CATA]Chemical Sciences/Catalysis021001 nanoscience & nanotechnology7. Clean energyHeterogeneous catalystMetalorganic frameworks (MOFs)QUIMICA ORGANICAPolitical scienceCatalyst activityGeneral Materials ScienceChristian ministryEuropean commission0210 nano-technologyHumanitiesComputingMilieux_MISCELLANEOUS
researchProduct

Solvent-Free Synthesis of a Pillared Three-Dimensional Coordination Polymer with Magnetic Ordering

2015

A new magnetic coordination polymer, [Fe(bipy)(im)2] (bipy = 4,4-bipyridine and im = imidazole), has been synthesized in a solvent-free reaction. Structural analysis reveals a pillared 3D coordination polymer composed by neutral layers, formed by iron(II) and imidazolate linkers, interconnected by bipy ligands which serve as pillars. Magnetic measurements show that the material magnetically orders at low temperatures (Tc = 14.5 K) as a weak ferromagnet, likely due to a spin canting.

chemistry.chemical_classificationSolvent freePolymersCoordination polymerInorganic chemistryPolymerCrystallography X-RayInorganic ChemistryThermogravimetryMagneticschemistry.chemical_compoundCrystallographychemistryFerromagnetismThermogravimetryImidazolateSolventsImidazolePhysical and Theoretical ChemistrySpin cantingInorganic Chemistry
researchProduct

Combination of magnetic susceptibility and electron paramagnetic resonance to monitor the 1D to 2D solid state transformation in flexible metal-organ…

2012

Two families of coordination polymers, {[M(btix)(2)(OH(2))(2)]·2NO(3)·2H(2)O}(n) [M = Co (1), Zn (2), Co-Zn (3); btix = 1,4-bis(triazol-1-ylmethyl)benzene] and {[M(btix)(2)(NO(3))(2)]}(n) [M = Co (4), Zn (5), Co-Zn (6)], have been synthesized and characterized. The two conformations of the ligand, syn and anti, lead to one-dimensional (1D) cationic chains or two-dimensional (2D) neutral grids. Extrusion of the water molecules of the 1D compounds results in an irreversible transformation into the 2D compounds, which involves a change in conformation of the btix ligands and a rearrangement in the metal environment with cleavage and reformation of covalent bonds. This structural transformation…

010405 organic chemistryLigandInorganic chemistry010402 general chemistry01 natural sciencesMagnetic susceptibility0104 chemical scienceslaw.inventionInorganic ChemistryMetalchemistry.chemical_compoundCrystallographychemistryCovalent bondlawvisual_artvisual_art.visual_art_mediumMoleculeMetal-organic frameworkPhysical and Theoretical ChemistryElectron paramagnetic resonanceBenzeneInorganic chemistry
researchProduct

Isostructural compartmentalized spin-crossover coordination polymers for gas confinement

2016

[EN] Here we present two FeII coordination polymers that possess discrete compartments suitable for CO2 physisorption despite the lack of permanent channels. The two crystalline materials, of general formula [Fe(btzbp)3](X)2 (X = ClO4 or BF4), present voids of ca. 250 Å3, which each can accommodate up to two CO2 molecules. The abrupt spin transition can be modified upon CO2 sorption, and different magnetic behaviour is observed depending on the number of molecules sorbed.

chemistry.chemical_classificationMaterials scienceInorganic chemistryCrystalline materialsSpin transitionSorption02 engineering and technologyPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences3. Good health0104 chemical sciencesInorganic ChemistryPhysisorptionchemistryChemical physicsSpin crossoverMoleculeIsostructural0210 nano-technology
researchProduct

Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers

2017

Nanometric biocompatible Metal-Organic Frameworks (nanoMOFs) are promising candidates for drug delivery. Up to now, most studies have targeted the intravenous route, related to pain and severe complications; whereas nanoMOFs for oral administration, a commonly used non-invasive and simpler route, remains however unexplored. We propose here the biofriendly preparation of a suitable oral nanocarrier based on the benchmarked biocompatible mesoporous iron(III) trimesate nanoparticles coated with the bioadhesive polysaccharide chitosan (CS). This method does not hamper the textural/structural properties and the sorption/release abilities of the nanoMOFs upon surface engineering. The interaction …

Materials scienceBiocompatibilityBioadhesiveQuímica organometàl·licaNanoparticleAdministration OralNanotechnology02 engineering and technologySurface engineering010402 general chemistry01 natural sciencesFerric CompoundsArticleChitosanchemistry.chemical_compoundHumansChitosanMultidisciplinaryNanotecnologia021001 nanoscience & nanotechnology3. Good health0104 chemical sciencesDrug LiberationKineticsLysergic Acid DiethylamideEnterocyteschemistryDrug deliveryNanoparticlesNanocarriersCaco-2 Cells0210 nano-technologyMesoporous material
researchProduct

Giant Crown-Shaped Polytungstate Formed by Self-Assembly of CeIII-Stabilized Dilacunary Keggin Fragments

2010

Single crystals of Na40K6[Ni(H2O)6]3 [K@K7Ce24Ge12W120O456 (OH)12(H2O)64]· 178H2O are synthesized by addition of KCl to a NaOAc/AcOH buffer solution containing Ce(NO3)3, GeO2, Na2WO4, and NiCl2 followed by slow evaporation at room temperature (24% yield).

chemistry.chemical_compoundCeriumchemistryYield (chemistry)Polymer chemistrySupramolecular chemistrychemistry.chemical_elementGeneral ChemistryBuffer solutionSelf-assemblyGeneral MedicineEvaporation (deposition)CatalysisAngewandte Chemie
researchProduct

MOF-Mediated Synthesis of Supported Fe-Doped Pd Nanoparticles under Mild Conditions for Magnetically Recoverable Catalysis**

2020

Metal–organic framework (MOF)-driven synthesis is considered as a promising alternative for the development of new catalytic materials with well-designed active sites. This synthetic approach is used here to gradually transform a new bimetallic MOF, with Pd and Fe as the metal components, by the in situ generation of aniline under mild conditions. This methodology results in a compositionally homogeneous nanocomposite formed by Fe-doped Pd nanoparticles that, in turn, are supported on iron oxide-doped carbon. The nanocomposite has been fully characterized by several techniques such as IR and Raman spectroscopy, TEM, XPS, and XAS. The performance of this nanocomposite as an heterogeneous cat…

Materials scienceIron09.- Desarrollar infraestructuras resilientes promover la industrialización inclusiva y sostenible y fomentar la innovaciónNanoparticle010402 general chemistryHeterogeneous catalysis01 natural sciences7. Clean energyCatalysisCatalysisNitrobenzenechemistry.chemical_compoundLight sourceAnilineCatàlisiQUIMICA ANALITICAmedia_common.cataloged_instanceUser FacilityEuropean unionBimetallic stripmedia_commonX-ray absorption spectroscopyNanocomposite010405 organic chemistryOrganic ChemistryGeneral ChemistryMetal-organic frameworks0104 chemical sciences12.- Garantizar las pautas de consumo y de producción sostenibleschemistryChemical engineeringFe dopedPd nanoparticlesNanoparticlesMaterials nanoestructuratsNational laboratoryHumanitiesPalladium
researchProduct

Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity

2022

The design of efficient food contact materials that maintain optimal levels of food safety is of paramount relevance to reduce the increasing number of foodborne illnesses. In this work, we develop a smart composite metal-organic framework (MOF)-based material that fosters a unique prolonged antibacterial activity. The composite is obtained by entrapping a natural food preserving molecule, carvacrol, into a mesoporous MIL-100(Fe) material following a direct and biocompatible impregnation method, and obtaining particularly high payloads. By exploiting the intrinsic redox nature of the MIL-100(Fe) material, it is possible to achieve a prolonged activity against Escherichia coli and Listeria i…

biocompositesantimicrobial activityUNESCO::CIENCIAS TECNOLÓGICASBacterisAliments MicrobiologiaMOFsAnti-Bacterial AgentsLysergic Acid DiethylamideCymenesGeneral Materials ScienceMaterialsOxidation-Reductioncontrolled deliveryMetal-Organic Frameworksfood packaging
researchProduct

Charge Mobility and Dynamics in Spin-Crossover Nanoparticles Studied by Time-Resolved Microwave Conductivity

2018

We use the electrode-less time-resolved microwave conductivity (TRMC) technique to characterize spin-crossover (SCO) nanoparticles. We show that TRMC is a simple and accurate mean for simultaneously as-sessing the magnetic state of SCO compounds and charge transport information on the nanometre length scale. In the low-spin state from liquid nitrogen temperature up to 360 K the TRMC measurements present two well-defined regimes in the mobility and in the half-life times, possessing similar transition tempera-tures TR near 225 K. Below TR, an activation-less regime associated with short lifetimes of the charge carri-ers points at the presence of shallow-trap states. Above TR, these states ar…

Length scaleMaterials scienceCondensed Matter - Mesoscale and Nanoscale PhysicsPhononTransition temperatureFOS: Physical sciencesThermal fluctuations02 engineering and technologyActivation energyLiquid nitrogen010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSpin crossoverChemical physicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)General Materials ScienceCharge carrierPhysical and Theoretical Chemistry0210 nano-technologyThe Journal of Physical Chemistry Letters
researchProduct

Fast Polymeric Functionalization Approach for the Covalent Coating of MoS2 Layers

2021

We present the covalent coating of chemically exfoliated molybdenum disulfide (MoS2) based on the polymerization of functional acryl molecules. The method relies on the efficient diazonium anchoring reaction to provoke the in situ radical polymerization and covalent adhesion of functional coatings. In particular, we successfully implement hydrophobicity on the exfoliated MoS2 in a direct, fast, and quantitative synthetic approach. The covalent functionalization is proved by multiple techniques including X-ray photoelectron spectroscopy and TGA-MS. This approach represents a simple and general protocol to reach dense and homogeneous functional coatings on 2D materials.

Materials scienceRadical polymerizationAdhesionMetalls de transicióengineering.materialchemistry.chemical_compoundchemistryCoatingChemical engineeringPolymerizationCovalent bondengineeringSurface modificationMoleculeGeneral Materials ScienceMaterialsMolybdenum disulfideACS Applied Materials & Interfaces
researchProduct

Sensing of the Molecular Spin in Spin-Crossover Nanoparticles with Micromechanical Resonators

2019

In the past years, the use of highly sensitive silicon microelectromechanical cantilevers has been proposed as a tool to characterize the spin-crossover phenomenon by employing fast optical readout of the motion. In this work, Fe II -based spin-crossover nanoparticles of the well-known [Fe(Htrz) 2 (trz)](BF 4 ) complex wrapped with thin silica shells of different sizes will be studied by means of silicon microresonators. The silica shell will enhance its chemical stability, whereas the low thickness will allow a proper mechanical coupling between the cantilever and the spin-crossover core. To maximize the sensing of the spin-crossover phenomena, different cantilever geometries and flexural…

Materials scienceCantileverSiliconchemistry.chemical_elementNanoparticle02 engineering and technology010402 general chemistry01 natural sciencesResonatorFlexural strengthSpin crossoverPhysical and Theoretical ChemistryCouplingbusiness.industryCiència dels materials021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergychemistryOptoelectronicsCompostos de coordinació0210 nano-technologybusinessActuatorFisicoquímicaThe Journal of Physical Chemistry C
researchProduct

A thermally/chemically robust and easily regenerable anilato-based ultramicroporous 3D MOF for CO 2 uptake and separation

2021

The combination of the properly designed novel organic linker, 3,6-N-ditriazoyil-2,5-dihydroxy-1,4-benzoquinone (trz2An), with CoII ions results in a 3D ultramicroporous MOF with high CO2 uptake capacity and separation efficiency, with particular attention to CO2/N2 and CO2/CH4 gas mixtures. This material consists of 1D chains of octahedrally coordinated CoII ions linked through the anilato ligands in the equatorial positions and to the triazole substituents from two neighbouring chains in the two axial positions. This leads to a 3D microporous structure with voids with an affinity for CO2 molecules and channels that enable the selective entrance of CO2 but not of molecules with larger kine…

010405 organic chemistryRenewable Energy Sustainability and the EnvironmentUNESCO::QUÍMICAHigh selectivityTriazoleGeneral ChemistryMicroporous materialQuímica010402 general chemistry01 natural sciences:QUÍMICA [UNESCO]0104 chemical sciencesIonchemistry.chemical_compoundAdsorptionchemistryChemical engineeringCarbon dioxideMoleculeGeneral Materials ScienceLinkerMaterialsKinetic diameterJournal of Materials Chemistry A
researchProduct

Metal-Organic Framework Surface Functionalization: GraftFast Surface Engineering to Improve MOF Nanoparticles Furtiveness (Small 40/2018)

2018

International audience

Materials scienceNanoparticleNanotechnology[CHIM.MATE]Chemical Sciences/Material chemistry02 engineering and technologyGeneral ChemistrySurface engineering010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesBiomaterialsSurface modificationGeneral Materials ScienceMetal-organic framework0210 nano-technologyComputingMilieux_MISCELLANEOUSBiotechnologyPegylated nanoparticlesSmall
researchProduct

Insertion of a [Fe II (pyimH) 3 ] 2+ [pyimH = 2‐(1 H ‐Imidazol‐2‐yl)pyridine] Spin‐Crossover Complex Inside a Ferromagnetic Lattice Based on a Chiral…

2015

The insertion of the [FeII(pyimH)3]2+ [pyimH = 2-(1H-imidazol-2-yl)pyridine] spin-crossover complex into a ferromagnetic bimetallic oxalate network affords the hybrid compound [FeII(pyimH)3][MnIICrIII(ox)3]2·X (ox = C2O42–). This spin-crossover complex templates the growth of crystals formed by a chiral 3D oxalate network. The magnetic properties of this hybrid magnet show the coexistence of long-range ferromagnetic ordering at 4.5 K and a spin crossover of the intercalated [FeII(pyimH)3]2+ complex above 250 K. The compound presents a light-induced excited spin-state trapping (LIESST) effect below 60 K although with limited photoconversion (less than 8 %).

Inorganic chemistry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesLIESSTOxalate0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryFerromagnetismSpin crossoverExcited statePyridine0210 nano-technologyChirality (chemistry)Bimetallic stripEuropean Journal of Inorganic Chemistry
researchProduct

Phase Transitions in Spin-Crossover Thin Films Probed by Graphene Transport Measurements

2016

Future multi-functional hybrid devices might combine switchable molecules and 2D material-based devices. Spin-crossover compounds are of particular interest in this context since they exhibit bistability and memory effects at room temperature while responding to numerous external stimuli. Atomically-thin 2D materials such as graphene attract a lot of attention for their fascinating electrical, optical, and mechanical properties, but also for their reliability for room-temperature operations. Here, we demonstrate that thermally-induced spin-state switching of spin-crossover nanoparticle thin films can be monitored through the electrical transport properties of graphene lying underneath the f…

Materials scienceFOS: Physical sciencesPhysics::OpticsBioengineeringContext (language use)Nanotechnology02 engineering and technologyDielectric010402 general chemistry01 natural scienceslaw.inventionlawMesoscale and Nanoscale Physics (cond-mat.mes-hall)General Materials ScienceThin filmCondensed Matter - Mesoscale and Nanoscale PhysicsGrapheneMechanical EngineeringMolecular electronicsGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciences3. Good healthCharge carrier0210 nano-technologyBilayer grapheneGraphene nanoribbonsNano Letters
researchProduct

Selective CO 2 Sorption Using Compartmentalized Coordination Polymers with Discrete Voids**

2021

Carbon capture and storage with porous materials is one of the most promising technologies to minimize CO2 release into the atmosphere. Here, we report a family of compartmentalized coordination polymers (CCPs) capable of capturing gas molecules in a selective manner based on two novel tetrazole-based ligands. Crystal structures have been modelled theoretically under the Density Functional Theory (DFT) revealing the presence of discrete voids of 380 A3 . Single gas adsorption isotherms of N2 , CH4 and CO2 have been measured, obtaining a loading capacity of 0.6, 1.7 and 2.2 molecules/void at 10 bar and at 298 K for the best performing material. Moreover, they present excellent selectivity an…

chemistry.chemical_classificationGasos d'efecte hivernacle010405 organic chemistryOrganic ChemistrySorptionGeneral ChemistryPolymer010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesAdsorptionchemistryChemical engineeringMoleculeMetal-organic frameworkDensity functional theoryGas separationPorous mediumMaterialsChemistry – A European Journal
researchProduct

Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption.

2011

Responsive materials for which physical or chemical properties can be tuned by applying an external stimulus are attracting considerable interest in view of their potential applications as chemical switches or molecular sensors. A potential source of such materials is metal-organic frameworks. These porous coordination polymers permit the physisorption of guest molecules that can provoke subtle changes in their porous structure, thus affecting their physical properties. Here we show that the chemisorption of gaseous HCl molecules by a non-porous one-dimensional coordination polymer instigates drastic modifications in the magnetic properties of the material. These changes result from profoun…

MultidisciplinaryMaterials science010405 organic chemistryCoordination polymerPorous Coordination PolymersGeneral Physics and AstronomyGeneral Chemistry010402 general chemistry01 natural sciencesGeneral Biochemistry Genetics and Molecular Biology0104 chemical scienceschemistry.chemical_compoundchemistryChemisorptionChemical physicsNature communications
researchProduct

Downsizing of robust Fe-triazole@SiO2 spin-crossover nanoparticles with ultrathin shells

2019

A chemical protocol to design robust hybrid [Fe(Htrz)2(trz)](BF4)@SiO2 nanoparticles (NPs) with sizes as small as 28 nm and ultrathin silica shells below 3 nm has been developed. These NPs present a characteristic abrupt spin transition with a subsequent decrease in the width of the thermal hysteresis upon reducing the NP size.

Thermal hysteresisMaterials science010405 organic chemistrySpin transitionTriazoleNanoparticleQuímica010402 general chemistry01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryChemical physicsSpin crossoverCompostos de coordinació
researchProduct

A tris-oxovanadium pyrogallate complex: synthesis, structure, and magnetic and electronic properties

2021

International audience; With the aim of identifying new cation-phenolate complexes, we herein investigated the reactivity of pyrogallol (H(3)pgal) with vanadium salts. A trimetallic anionic complex was identified, and found to be formed under a broad set of reaction conditions. This complex, with the formula V3O3(pgal)(3)(3-), consists of three oxovanadium(iv) units connected together by three pyrogallate ligands to afford a bowl-shaped species presenting a pseudo 3-fold symmetry axis. Its crystal structure is reported, as well as its characterisation by a broad set of techniques, including powder X-ray diffraction, thermogravimetric analysis, infrared and Raman spectroscopy, and solid stat…

Thermogravimetric analysisMaterials science010405 organic chemistryInfraredQuímica organometàl·licaVanadiumchemistry.chemical_elementCrystal structure010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistryCompostos orgànics Síntesisymbols.namesakeCrystallographychemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]symbolsMetal-organic frameworkReactivity (chemistry)Diffuse reflectionRaman spectroscopyDalton Transactions
researchProduct

Spin switching in electronic devices based on 2D assemblies of spin-crossover nanoparticles

2015

In this communication we study the transport properties of two-dimensional assemblies of [Fe(Htrz)2(trz)](BF4) spin-crossover nanoparticles (NPs) with two different morphologies. The NPs have been synthesized made in a similar manner than in our previous study in which single NPs were measured. We prepared free-standing self-assembled monolayer sheets of both SCO NPs formed at the air/liquid interface on holey carbon TEM grids to extract their global arrangement and NP size distributions by STEM-HAADF technique. The SCO NP systems present a rod-like shape and possess two different volumes, corresponding to lengths of 25 nm and 44 nm along the rod direction and average diameters of 10 nm and…

Materials scienceCondensed Matter - Mesoscale and Nanoscale PhysicsBistabilityCondensed matter physicsSpin statesMechanical EngineeringMolecular electronicsNanoparticleFOS: Physical sciencesNanotechnologyElectrical resistance and conductanceMechanics of MaterialsSpin crossoverMesoscale and Nanoscale Physics (cond-mat.mes-hall)General Materials ScienceSpin (physics)Order of magnitude
researchProduct

Hybrid magnetic superconductors formed by TaS2 layers and spin crossover complexes.

2013

The restacking of charged TaS2 nanosheets with molecular counterparts has so far allowed for the combination of superconductivity with a manifold of other molecule-intrinsic properties. Yet, a hybrid compound that blends superconductivity with spin crossover switching has still not been reported. Here we continue to exploit the solid-state/molecule-based hybrid approach for the synthesis of a layered TaS2-based material that hosts Fe(2+) complexes with a spin switching behavior. The chemical design and synthetic aspects of the exfoliation/restacking approach are discussed, highlighting how the material can be conveniently obtained in the form of highly oriented easy-to-handle flakes. Finall…

Inorganic ChemistrySuperconductivityCondensed matter physicsSpin crossoverChemistryMoleculePhysical and Theoretical ChemistryHybrid approachExfoliation jointChemical designCharacterization (materials science)Spin-½Inorganic chemistry
researchProduct

Ultramicroporous iron-isonicotinate MOFs combining size-exclusion kinetics and thermodynamics for efficient CO2/N2 gas separation

2023

Two ultramicroporous 2D and 3D iron-based Metal-Organic Frameworks (MOFs) have been obtained by solvothermal synthesis using different ratios and concentrations of precursors. Their reduced pore space decorated with pendant pyridine from tangling isonicotinic ligands enables the combination of size-exclusion kinetic gas separation, due to their small pores, with thermodynamic separation, resulting from the interaction of the linker with CO2 molecules. This combined separation results in efficient materials for dynamic breakthrough gas separation with virtually infinite CO2/N2 selectivity in a wide operando range and with complete renewability at room temperature and ambient pressure.

Renewable Energy Sustainability and the EnvironmentGeneral Materials ScienceGeneral ChemistryQuímica
researchProduct

Design of Bistable Gold@Spin‐Crossover Core–Shell Nanoparticles Showing Large Electrical Responses for the Spin Switching

2019

<p>A simple protocol to prepare core-shell gold@spin-crossover (Au@SCO) nanoparticles (NPs) based on the 1D spin-crossover [Fe(Htrz)<sub>2</sub>(trz)](BF<sub>4</sub>) coordination polymer is reported. The synthesis relies on a two-step approach consisting on a partial surface ligand substitution of the citrate-stabilized Au NPs followed by the controlled growth of a very thin layer of the SCO polymer. As a result, colloidally stable core@shell spherical NPs of 19 nm in size exhibiting a narrow distribution in sizes have been obtained, revealing a switchable SCOshell of <i>ca.</i>4 nm. Temperature-dependent charge transport measurements of an electri…

Materials scienceSpin statesCoordination polymerNanotecnologiaMechanical EngineeringSpin transitionNanoparticleConductanceMolecular electronics02 engineering and technologyCiència dels materials010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceschemistry.chemical_compoundElectrònica molecularDifferential scanning calorimetrychemistryMechanics of MaterialsChemical physicsSpin crossoverGeneral Materials Science0210 nano-technologyAdvanced Materials
researchProduct

Near Room-Temperature Memory Devices Based on Hybrid Spin-Crossover@SiO2Nanoparticles Coupled to Single-Layer Graphene Nanoelectrodes

2016

The charge transport properties of SCO [Fe(Htrz)2 (trz)](BF4 ) NPs covered with a silica shell placed in between single-layer graphene electrodes are reported. A reproducible thermal hysteresis loop in the conductance above room-temperature is evidenced. This bistability combined with the versatility of graphene represents a promising scenario for a variety of technological applications but also for future sophisticated fundamental studies.

Materials scienceBistabilityGrapheneMechanical EngineeringNanoparticleConductanceMolecular electronicsNanotechnologyCharge (physics)02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionMechanics of MaterialslawSpin crossoverSio2 nanoparticlesGeneral Materials Science0210 nano-technologyAdvanced Materials
researchProduct

Core–Shell Nanoparticles: Design of Bistable Gold@Spin‐Crossover Core–Shell Nanoparticles Showing Large Electrical Responses for the Spin Switching (…

2019

Materials scienceCondensed matter physicsBistabilityMechanics of MaterialsSpin crossoverMechanical EngineeringMolecular electronicsGeneral Materials ScienceCore shell nanoparticlesSpin-½Advanced Materials
researchProduct

Boosting the in situ encapsulation of proteins with MIL-100(Fe): the role of strong Lewis acid centers

2021

Encapsulation of biomolecules using Metal-Organic Frameworks (MOFs) to form stable biocomposites has been demonstrated a valuable strategy for their preservation and controlled release, which has been however restricted to specific electrostatic surface conditions. We present a general in situ strategy that promotes the spontaneous MOF growth onto a broad variety of proteins, for the first time, regardless of their surface nature. We demonstrate that MOFs based on cations exhibiting considerable inherent acidity such as MIL-100(Fe) enable biomolecule encapsulation, including alkaline proteins previously inaccesible by the welldeveloped in situ encapsulation with azolate-based MOFs. In parti…

In situchemistry.chemical_classificationScaffoldchemistryBiomoleculefungiTriggered releaseNanotechnologyBiocompatible materialControlled releaseSurface conditionsEncapsulation (networking)
researchProduct

Exploiting redox activity of MIL-100(Fe) carrier enables carvacrol prolonged antimicrobial activity

2021

The design of efficient food contact materials that maintain optimal levels of food safety is of paramount relevance to reduce the increasing foodborne illnesses. In this work, we develop a smart composite MOF-based material that fosters a unique prolonged antibacterial activity. The composite is obtained by entrapping a natural preserving food molecule, carvacrol, into the mesoporous MIL-100(Fe) material following a direct and biocompatible impregnation method and obtaining particularly high payloads. By exploiting the intrinsic redox nature of MIL-100(Fe) material it is possible to achieve a prolonged activity against E. coli bacteria due to a triggered two-step carvacrol release of films…

Metalchemistry.chemical_compoundFood contact materialschemistryvisual_artComposite numbervisual_art.visual_art_mediumMoleculeCarvacrolAntibacterial activityMesoporous materialCombinatorial chemistryRedox
researchProduct

Boosting Protein Encapsulation through Lewis-Acid-Mediated Metal–Organic Framework Mineralization: Toward Effective Intracellular Delivery

2022

Encapsulation of biomolecules using metal–organic frameworks (MOFs) to form stable biocomposites has been demonstrated to be a valuable strategy for their preservation and controlled release, which has been however restricted to specific electrostatic surface conditions. We present a Lewis-acid-mediated general in situ strategy that promotes the spontaneous MOF growth on a broad variety of proteins, for the first time, regardless of their surface nature. We demonstrate that MOFs based on cations exhibiting considerable inherent acidity such as MIL-100(Fe) enable efficient biomolecule encapsulation, including elusive alkaline proteins previously inaccessible by the well-developed in situ azo…

General Chemical EngineeringMaterials ChemistryGeneral ChemistryUNESCO::CIENCIAS TECNOLÓGICASChemistry of Materials
researchProduct

Solvent-free synthesis of ZIFs: a route toward the elusive Fe(II) analogue of ZIF-8

2019

Herein we report the synthesis of an elusive metal-organic framework, the iron(II) analogue of ZIF-8 with the formula Fe(2-methylimidazolate) , here denoted as MUV-3. The preparation of this highly interesting porous material, inaccessible by common synthetic procedures, occurs in a solvent-free reaction upon addition of an easily detachable template molecule, yielding single crystals of MUV-3. This methodology can be extended to other metals and imidazolate derivatives, allowing the preparation of ZIF-8, ZIF-67, and the unprecedented iron(II) ZIFs Fe(2-ethylimidazolate) and Fe(2-methylbenzimidazolate) . The different performance of MUV-3 toward NO sorption, in comparison to ZIF-8, results …

Zeolitic imidazolate frameworksStorage02 engineering and technologyOverpotential010402 general chemistryMetal-Organic frameworks01 natural sciencesBiochemistryCatalysischemistry.chemical_compoundColloid and Surface ChemistryImidazolateMaterialsThermal-StabilityTafel equationNanocompositeChemistryOxygen evolutionElectrocatalystsGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesChemisorptionPhysical chemistryMetal-organic frameworkAdsorptionCristalls0210 nano-technologyOxygen evolutionZeolitic imidazolate framework
researchProduct

Inside Cover: A SIM-MOF: Three-Dimensional Organisation of Single-Ion Magnets with Anion-Exchange Capabilities (Chem. Eur. J. 34/2014)

2014

Single ionIon exchangeChemistryMagnetOrganic ChemistryInorganic chemistryMetal-organic frameworkCover (algebra)General ChemistryCatalysisChemistry - A European Journal
researchProduct

Spin-crossover nanoparticles anchored on MoS2 layers for heterostructures with tunable strain driven by thermal or light-induced spin switching

2021

In the past few years, the effect of strain on the optical and electronic properties of MoS2 layers has attracted particular attention as it can improve the performance of optoelectronic and spintronic devices. Although several approaches have been explored, strain is typically externally applied on the two-dimensional material. In this work, we describe the preparation of a reversible ‘self-strainable’ system in which the strain is generated at the molecular level by one component of a MoS2-based composite material. Spin-crossover nanoparticles were covalently grafted onto functionalized layers of semiconducting MoS2 to form a hybrid heterostructure. Their ability to switch between two spi…

Spin statesStrain (chemistry)Spintronicsbusiness.industryChemistryGeneral Chemical EngineeringNanoparticleHeterojunction02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesCondensed Matter::Materials ScienceSpin crossoverOptoelectronicsMaterials nanoestructurats0210 nano-technologybusinessLayer (electronics)MaterialsSpin-½Nature Chemistry
researchProduct

Gas confinement in compartmentalized coordination polymers for highly selective sorption

2016

Discrimination between different gases is an essential aspect for industrial and environmental applications involving sensing and separation. Several classes of porous materials have been used in this context, including zeolites and more recently MOFs. However, to reach high selectivities for the separation of gas mixtures is a challenging task that often requires the understanding of the specific interactions established between the porous framework and the gases. Here we propose an approach to obtain an enhanced selectivity based on the use of compartmentalized coordination polymers, named CCP-1 and CCP-2, which are crystalline materials comprising isolated discrete cavities. These compar…

Solucions polimèriquesContext (language use)02 engineering and technologyNeutron scattering010402 general chemistry01 natural sciencescomplex mixturesMolecular dynamicsAdsorptionOrganic chemistryPorositychemistry.chemical_classificationChemistrySorptionQuímicaGeneral ChemistryPolymer021001 nanoscience & nanotechnologyeye diseases3. Good health0104 chemical sciencesChemistry[CHIM.POLY]Chemical Sciences/PolymersChemical engineeringsense organs0210 nano-technologyPorous medium
researchProduct

Dynamic magnetic materials based on the cationic coordination polymer [Cu(btix)2]n(2n+) [btix = 1,4-bis(triazol-1-ylmethyl)benzene]: tuning the struc…

2012

A three-dimensional coordination polymer, [Cu(btix)(2)(BF(4))(2)](n) [btix = 1,4-bis(triazol-1-ylmethyl)benzene], with antiferromagnetic interactions occurring via the organic ligand, has been prepared and characterized. It has been shown to permit the exchange of anionic species in the crystalline network with modification of the magnetic properties. Coordinated BF(4)(-) can be reversibly exchanged by different anions with (NO(3)(-) and Cl(-)) or without (PF(6)(-) and ClO(4)(-)) dynamic response of the organic ligand, which acts as the only linker between the metal centers. Interestingly, an irreversible exchange occurs with N(3)(-) anions to generate a new coordination polymer, [Cu(btix)(…

AnionsModels MolecularIon exchangeMolecular StructureLigandCoordination polymerPolymersInorganic chemistryCationic polymerizationAb initioCrystallography X-RayMagnetic susceptibilitylaw.inventionInorganic Chemistrychemistry.chemical_compoundCrystallographyMagnetic FieldschemistrylawCationsOrganometallic CompoundsAntiferromagnetismPhysical and Theoretical ChemistryElectron paramagnetic resonanceCopperInorganic chemistry
researchProduct

Unravelling the chemical design of spin-crossover nanoparticles based on iron(ii)–triazole coordination polymers: towards a control of the spin trans…

2015

A systematic study of the key synthetic parameters that control the growth of spin-crossover (SCO) nanoparticles (NPs) using the reverse micelle technique has been undertaken in the system [Fe(Htrz)2(trz)](BF4)·H2O, (Htrz = 1,2,4-triazole). This has permitted us to modulate the physical properties of the NPs in a controlled and reproducible manner. In particular, a control over the size of the NPs (in the range 4 to 16 nm) has been achieved by varying the water to surfactant molar ratio. The consequences of this size variation on the cooperativity of the spin transition are discussed. Finally, this approach has been extended to the chemical alloy [Fe(Htrz)2.95(NH2trz)0.05](ClO4)2 in order t…

chemistry.chemical_classificationMaterials scienceAlloySpin transitionNanoparticleCooperativityNanotechnology02 engineering and technologyGeneral ChemistryPolymerengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesMicelle0104 chemical sciencesPulmonary surfactantchemistrySpin crossoverMaterials ChemistryengineeringPhysical chemistry0210 nano-technologyJournal of Materials Chemistry C
researchProduct

A Mixed-Ligand Approach for Spin-Crossover Modulation in a Linear FeII Coordination Polymer

2014

In this work, we present a family of Fe(II) coordination polymers of general formula [Fe(btzx)(3-3x)(btix)(3x)](ClO4)2 with interesting spin-crossover properties. These coordination polymers have been synthesized using chemical mixtures of two different but closely related ligands, 1,4-bis(tetrazol-1-ylmethyl)benzene (btzx) and 1,4-bis(triazol-1-ylmethyl)benzene (btix), and the effect of a gradual substitution of the ligand in the spin transition temperature has been investigated. Several chemical mixtures have been structurally characterized by X-ray powder diffraction indicating a clear critical amount in the composition of the mixture after which mixed phases rather than a single phase c…

chemistry.chemical_classificationPolymersChemistryCoordination polymerLigandStereochemistrySpin transitionPolymerLigands3. Good healthInorganic ChemistryThermogravimetrychemistry.chemical_compoundCrystallographySpin crossoverThermogravimetryFerrous CompoundsPhysical and Theoretical ChemistryBenzenePowder DiffractionPowder diffractionInorganic Chemistry
researchProduct

Spin-Crossover Modification through Selective CO2 Sorption

2013

[EN] We present a spin-crossover Fe-II coordination polymer with no permanent channels that selectively sorbs CO2 over N-2. The one-dimensional chains display internal voids of similar to 9 angstrom diameter, each being capable to accept one molecule of CO2 at 1 bar and 273 K. X-ray diffraction provides direct structural evidence of the location of the gas molecules and reveals the formation of O=C=O(delta(-))center dot center dot center dot pi interactions. This physisorption modifies the spin transition, producing a 9 K increase in T-1/2.

Diffraction010405 organic chemistryMagnetismChemistryCoordination polymerStereochemistryMagnetismSpin transitionSorptionGeneral Chemistry010402 general chemistry01 natural sciencesBiochemistryCatalysis0104 chemical sciences3. Good healthchemistry.chemical_compoundCrystallographyColloid and Surface ChemistryPhysisorptionSpin crossoverMoleculeCO2 adsorptionMOFJournal of the American Chemical Society
researchProduct

Unravelling the chemical design of spin-crossover nanoparticles based on iron(ii)–triazole coordination polymers: towards a control of the spin trans…

2015

We present a systematic study of the key synthetic parameters that control the growth of Fe–triazole spin-crossover nanoparticles and the effect of this size modulation on the spin transition.

ChemistryCondensed Matter::Strongly Correlated ElectronsJournal of Materials Chemistry. C, Materials for Optical and Electronic Devices
researchProduct

CCDC 1473649: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographycatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) diperchlorate carbon dioxide]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 910547: Experimental Crystal Structure Determination

2013

Related Article: Eugenio Coronado, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas, Fernando Rey, and Iñigo J. Vitórica-Yrezábal|2013|J.Am.Chem.Soc.|135|15986|doi:10.1021/ja407135k

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu2-11'-(14-phenylenebis(methylene))bis(1H-tetrazole))-iron(ii) diperchlorate]Experimental 3D Coordinates
researchProduct

CCDC 1473650: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) diperchlorate ethene]Experimental 3D Coordinates
researchProduct

CCDC 1440481: Experimental Crystal Structure Determination

2016

Related Article: Néstor Calvo Galve, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Mínguez Espallargas, Eugenio Coronado|2016|Inorg.Chem.Front.|3|808|doi:10.1039/C5QI00277J

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-11'-([11'-biphenyl)-44'-diylbis(methylene)]bis(1H-tetrazole))-iron(ii) bis(tetrafluoroborate)]Experimental 3D Coordinates
researchProduct

CCDC 1899779: Experimental Crystal Structure Determination

2019

Related Article: Javier López-Cabrelles, Jorge Romero, Gonzalo Abellán, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Minguez Espallargas|2019|J.Am.Chem.Soc.|141|7173|doi:10.1021/jacs.9b02686

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-(bis(mu-2-methylbenzimidazolato)-iron)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 987661: Experimental Crystal Structure Determination

2014

Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetracosakis(mu2-44'-Bipyridine-NN'-dioxide)-hexa-erbium hexakis((mu6-oxo)-dodecakis(mu2-oxo)-hexaoxo-hexa-molybdenum) hexakis(trifluoromethanesulfonate) octahydrate)Experimental 3D Coordinates
researchProduct

CCDC 1440482: Experimental Crystal Structure Determination

2016

Related Article: Néstor Calvo Galve, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Mínguez Espallargas, Eugenio Coronado|2016|Inorg.Chem.Front.|3|808|doi:10.1039/C5QI00277J

catena-[tris(mu-11'-((11'-biphenyl)-44'-diylbis(methylene))bis(1H-tetrazole))-iron bis(tetrafluoroborate)]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1825894: Experimental Crystal Structure Determination

2019

Related Article: Javier López-Cabrelles, Jorge Romero, Gonzalo Abellán, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Minguez Espallargas|2019|J.Am.Chem.Soc.|141|7173|doi:10.1021/jacs.9b02686

Space GroupCrystallographyCrystal Systemcatena-(bis(mu-2-methylimidazolato)-iron unknown solvate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1439097: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron bis(tetrafluoroborate)]Experimental 3D Coordinates
researchProduct

CCDC 987659: Experimental Crystal Structure Determination

2014

Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetracosakis(mu-44'-bypyridyl-NN'-dioxide)-hexa-dysprosium hexakis(trifluoromethanesulfonate) hexakis(tridecakis(mu-oxo)-hexaoxo-hexa-molybdenum) icosahydrate]Experimental 3D Coordinates
researchProduct

CCDC 2087735: Experimental Crystal Structure Determination

2021

Related Article: Hassan Mkhadder, Morgane Denis, Mónica Giménez-Marqués, Walter Cañón-Mancisidor, Bernard Humbert, Elise Deunf, Philippe Poizot, Thomas Devic|2021|Dalton Trans.|50|13399|doi:10.1039/D1DT01990B

Space GroupCrystallographyCrystal SystemCrystal Structuretri-potassium tris(mu-benzene-123-triolato)-tris(oxido)-tri-vanadium NN-dimethylformamide solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1411200: Experimental Crystal Structure Determination

2015

Related Article: Maurici López-Jordà, Mónica Giménez-Marqués, Cédric Desplanches, Guillermo Mínguez Espallargas, Miguel Clemente-León, Eugenio Coronado|2016|Eur.J.Inorg.Chem.||2187|doi:10.1002/ejic.201500790

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[tris(2-(1H-Imidazol-2-yl)pyridine)-iron(ii) bis(tris(mu2-oxalato)-chromium(iii)-manganese(ii)) dihydrate]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 910548: Experimental Crystal Structure Determination

2013

Related Article: Eugenio Coronado, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas, Fernando Rey, and Iñigo J. Vitórica-Yrezábal|2013|J.Am.Chem.Soc.|135|15986|doi:10.1021/ja407135k

Space GroupCrystallographyCrystal Systemcatena-[tris(mu~2~-11'-(14-phenylenebis(methylene))bis(1H-tetrazole))-iron diperchlorate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2217201: Experimental Crystal Structure Determination

2023

Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C

catena-[bis(mu-oxido)-dodecakis(mu-pyridine-4-carboxylato)-aqua-di-iron(ii)-tetra-iron(iii) NN-dimethylformamide solvate hemihydrate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 987658: Experimental Crystal Structure Determination

2014

Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255

Space GroupCrystallographyTri-terbium tris((mu6-oxo)-dodecakis(mu2-oxo)-hexaoxo-hexa-molybdenum) tris(trifluoromethanesulfonate) dodecakis(44'-bipyridinium-11'-diolate) hydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2087736: Experimental Crystal Structure Determination

2021

Related Article: Hassan Mkhadder, Morgane Denis, Mónica Giménez-Marqués, Walter Cañón-Mancisidor, Bernard Humbert, Elise Deunf, Philippe Poizot, Thomas Devic|2021|Dalton Trans.|50|13399|doi:10.1039/D1DT01990B

Space GroupCrystallographyCrystal Systemtri-potassium tris(mu-benzene-123-triolato)-tris(oxido)-tri-vanadium tetrahydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1439096: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographycatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) bis(tetrafluoroborate)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1899778: Experimental Crystal Structure Determination

2019

Related Article: Javier López-Cabrelles, Jorge Romero, Gonzalo Abellán, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Minguez Espallargas|2019|J.Am.Chem.Soc.|141|7173|doi:10.1021/jacs.9b02686

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(bis(mu-2-ethylimidazolato)-iron)Experimental 3D Coordinates
researchProduct

CCDC 1473651: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) diperchlorate methane]Experimental 3D Coordinates
researchProduct

CCDC 1473652: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

catena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) bis(tetrafluoroborate) carbon dioxide]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 987660: Experimental Crystal Structure Determination

2014

Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetracosakis(mu-44'-bypyridyl-NN'-dioxide)-hexa-holmium hexakis(trifluoromethanesulfonate) hexakis(tridecakis(mu-oxo)-hexaoxo-hexa-molybdenum) icosahydrate]Experimental 3D Coordinates
researchProduct

CCDC 2217199: Experimental Crystal Structure Determination

2023

Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-[(mu-oxido)-hexakis(mu-pyridine-4-carboxylato)-iron(ii)-di-iron(iii) NN-dimethylformamide solvate]
researchProduct

CCDC 1420989: Experimental Crystal Structure Determination

2015

Related Article: Javier López-Cabrelles, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas, and Eugenio Coronado|2015|Inorg.Chem.|54|10490|doi:10.1021/acs.inorgchem.5b02003

Space GroupCrystallographycatena-((mu2-44'-Bipyridine)-bis(mu2-imidazolato)-iron)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 987656: Experimental Crystal Structure Determination

2014

Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255

catena-[tetracosakis(mu~2~-44'-Bipyridine 11'-dioxide)-hexa-holmium(iii) octadecakis(trifluoromethanesulfonate) unknown solvate hexahydrate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2217200: Experimental Crystal Structure Determination

2023

Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[bis(mu-oxido)-dodecakis(mu-pyridine-4-carboxylato)-aqua-di-iron(ii)-tetra-iron(iii) NN-dimethylformamide solvate monohydrate]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 987655: Experimental Crystal Structure Determination

2014

Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255

catena-[tetracosakis(mu~2~-44'-Bipyridine 11'-dioxide)-hexa-dysprosium(iii) octadecakis(trifluoromethanesulfonate) unknown solvate decahydrate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1473654: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographycatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) bis(tetrafluoroborate) methane]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2237340: Experimental Crystal Structure Determination

2023

Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametershexakis(mu-acetato)-(mu-oxo)-triaqua-tri-iron(iii) perchlorate trihydrateExperimental 3D Coordinates
researchProduct

CCDC 987657: Experimental Crystal Structure Determination

2014

Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetracosakis(mu~2~-44'-Bipyridine 11'-dioxide)-hexa-erbium(iii) octadecakis(trifluoromethanesulfonate) unknown solvate hexahydrate]Experimental 3D Coordinates
researchProduct

CCDC 987654: Experimental Crystal Structure Determination

2014

Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetracosakis(mu2-44'-Bipyridine 11'-dioxide)-hexa-terbium(iii) octadeca(trifluoromethanesulfonate) methanol solvate hydrate]Experimental 3D Coordinates
researchProduct

CCDC 2237339: Experimental Crystal Structure Determination

2023

Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C

catena-[hexakis(mu-pyridine-4-carboxylato)-(mu-oxo)-iron(ii)-di-iron(iii) carbon disulfide]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1473653: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) bis(tetrafluoroborate) ethene]Experimental 3D Coordinates
researchProduct

CCDC 2217202: Experimental Crystal Structure Determination

2023

Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C

Space GroupCrystallographycatena-[(mu-oxido)-hexakis(mu-pyridine-4-carboxylato)-iron(ii)-di-iron(iii)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 921439: Experimental Crystal Structure Determination

2013

Related Article: Eugenio Coronado, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas, Fernando Rey, and Iñigo J. Vitórica-Yrezábal|2013|J.Am.Chem.Soc.|135|15986|doi:10.1021/ja407135k

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu2-11'-(14-Phenylenebis(methylene))bis(1H-tetrazole))-iron(ii) diperchlorate ethanol solvate hemihydrate]Experimental 3D Coordinates
researchProduct