Search results for "protein kinase A"
showing 10 items of 231 documents
DNA replication arrest in response to genotoxic stress provokes early activation of stress-activated protein kinases (SAPK/JNK).
2009
Abstract The impact of DNA damage-induced replication blockage for early activation of stress kinases [stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)] is largely unknown. Here, we show that induction of dual phosphorylation of SAPK/JNK by the DNA polymerase inhibitor aphidicolin was not ameliorated by additional exposure to ultraviolet (UV) light, indicating that overlapping mechanisms participate in signaling to SAPK/JNK triggered by both agents. UV-induced DNA replication blockage, cyclobutane pyrimidine dimer formation and DNA strand break induction coincided with SAPK/JNK phosphorylation at early (≤ 30 min) but not late (≥ 2 h) time points after exposure. Genotoxin…
4-(4-Fluorophenyl)-2-methyl-3-(1-oxy-4-pyridyl)isoxazol-5(2H)-one
2008
The crystal structure of the title compound, C15H11FN2O3, was determined as part of a study on the biological activity of isoxazolone derivatives as p38 mitogen-activated protein kinase (MAPK) inhibitors. The dihedral angles between rings are isoxazole/benzene = 55.0 (3)°, isoxazole/pyridine = 33.8 (2)° and benzene/pyridine = 58.1 (2)°.
Mechanisms of cell activation by heavy metal ions
1998
Heavy metal ions can be released by corroding metallic implants into the surrounding tissue. When they enter blood vessels some of them are carried by proteins like albumin and can be taken up by endothelial cells lining the vessels. To study their involvement in the inflammatory response we investigated heavy metal ion induced effects in cultured human vascular endothelial cells (HUVECs). NiCl2 and CoCl2 upregulate, especially in concentrations of 1 mM, the expression of adhesion molecules (e.g., E-selectin and intercellular adhesion molecule-1), as well as the cytokines IL-6 and IL-8, as shown by enzyme immunoassay and Northern blot analysis. In addition, possible signal transduction mech…
Phosphorylation of cytochromes P450: First discovery of a posttranslational modification of a drug-metabolizing enzyme
2005
Cytochromes P450 (CYP) are important components of xenobiotic-metabolizing monooxygenases (CYP-dependent monooxygenases). Their regulation by induction, most commonly by transcriptional activation, mediated by xenobiotics, normally substrates of the corresponding CYP, is well known and has been widely studied. Our team has discovered an additional important regulation of xenobiotic-metabolizing CYPs pertaining to posttranslational modification by phosphorylation. Individual CYPs are phosphorylated by different protein kinases, leading to CYP isoenzyme-selective changes in the metabolism of individual substrates and consequent drastic changes in the control of genotoxic metabolites. Best stu…
TORC1 controls G1–S cell cycle transition in yeast via Mpk1 and the greatwall kinase pathway
2015
The target of rapamycin complex 1 (TORC1) pathway couples nutrient, energy and hormonal signals with eukaryotic cell growth and division. In yeast, TORC1 coordinates growth with G1–S cell cycle progression, also coined as START, by favouring the expression of G1 cyclins that activate cyclin-dependent protein kinases (CDKs) and by destabilizing the CDK inhibitor Sic1. Following TORC1 downregulation by rapamycin treatment or nutrient limitation, clearance of G1 cyclins and C-terminal phosphorylation of Sic1 by unknown protein kinases are both required for Sic1 to escape ubiquitin-dependent proteolysis prompted by its flagging via the SCFCdc4 (Skp1/Cul1/F-box protein) ubiquitin ligase complex.…
Structure-activity relationship of staurosporine analogs in regulating expression of endothelial nitric-oxide synthase gene.
2000
In human umbilical vein endothelial cells and in human umbilical vein endothelial cell-derived EA.hy 926 cells, staurosporine (Stsp) and its glycosidic indolocarbazole analogs 7-hydroxystaurosporine (UCN-01) and 4'-N-benzoyl staurosporine (CGP 41251) enhanced nitric-oxide synthase (NOS) III mRNA expression (analyzed by RNase protection assay), protein expression (determined by Western blot), and activity [measured by rat fetal lung fibroblast (RFL-6) reporter cell assay] in a concentration- and time-dependent manner. In contrast, the bisindolylmaleimide analogs GF 109203X, Ro 31-8220 and Go 6983 had no effect on NOS III expression, and Go 6976, a methyl- and cyanoalkyl-substituted nonglycos…
Differential roles of cAMP and cGMP in megakaryocyte maturation and platelet biogenesis
2012
The cyclic nucleotides cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) regulate the activity of protein kinase A (PKA) and protein kinase G (PKG), respectively. This process helps maintain circulating platelets in a resting state. Here we studied the role of cAMP and cGMP in the regulation of megakaryocyte (MK) differentiation and platelet formation. Cultured, platelet-producing MKs were differentiated from fetal livers harvested from 13.5 days postcoital mouse embryos. MK development was accompanied by a dramatic increase in cAMP production and expression of soluble guanylate cyclase, PKG, and PKA as well as their downstream targets vasodilator-stimulated ph…
Time-resolved characterization of cAMP/PKA-dependent signaling reveals that platelet inhibition is a concerted process involving multiple signaling p…
2014
One of the most important physiological platelet inhibitors is endothelium-derived prostacyclin which stimulates the platelet cyclic adenosine monophosphate/protein kinase A (cAMP/PKA)-signaling cascade and inhibits virtually all platelet-activating key mechanisms. Using quantitative mass spectrometry, we analyzed time-resolved phosphorylation patterns in human platelets after treatment with iloprost, a stable prostacyclin analog, for 0, 10, 30, and 60 seconds to characterize key mediators of platelet inhibition and activation in 3 independent biological replicates. We quantified over 2700 different phosphorylated peptides of which 360 were significantly regulated upon stimulation. This com…
Potential and limitations of PKA/ PKG inhibitors for platelet studies
2021
Cyclic nucleotides (cAMP and cGMP) and corresponding protein kinases, protein kinase A (PKA) and protein kinase G (PKG), are the main intracellular mediators of endothelium-derived platelet inhibitors. Pharmacological PKA/PKG inhibitors are often used to discriminate between these two kinase activities and to analyze their underlying mechanisms. Previously we showed that all widely used PKG inhibitors (KT5823, DT3, RP isomers) either did not inhibit PKG or inhibited and even activated platelets independently from PKG. In this study, we examined several PKA inhibitors as well as inhibitors of adenylate and guanylate cyclases to reveal their effects on platelets and establish whether they are…
Activation of cGMP-dependent Protein Kinase Iβ Inhibits Interleukin 2 Release and Proliferation of T Cell Receptor-stimulated Human Peripheral T Cells
2000
Several major functions of type I cGMP-dependent protein kinase (cGK I) have been established in smooth muscle cells, platelets, endothelial cells, and cardiac myocytes. Here we demonstrate that cGK Ibeta is endogenously expressed in freshly purified human peripheral blood T lymphocytes and inhibits their proliferation and interleukin 2 release. Incubation of human T cells with the NO donor, sodium nitroprusside, or the membrane-permeant cGMP analogs PET-cGMP and 8-pCPT-cGMP, activated cGK I and produced (i) a distinct pattern of phosphorylation of vasodilator-stimulated phosphoprotein, (ii) stimulation of the mitogen-activated protein kinases ERK1/2 and p38 kinase, and, upon anti-CD3 stimu…