Search results for "proteolysis"
showing 10 items of 119 documents
Inhibition of ubiquitin-dependent proteolysis by a synthetic glycine-alanine repeat peptide that mimics an inhibitory viral sequence.
2002
AbstractThe glycine–alanine repeat (GAr) of the Epstein–Barr virus nuclear antigen-1 is a cis-acting transferable element that inhibits ubiquitin/proteasome-dependent proteolysis in vitro and in vivo. We have here examined the effect of a synthetic 20-mer GAr oligopeptide on the degradation of iodinated or biotin labeled lysozyme in a rabbit reticulocyte lysates in vitro assay. Micromolar concentrations of the GA-20 peptide inhibited the hydrolysis of lysozyme without significant effect on ubiquitination. Addition of the peptide did not inhibit the hydrolysis of fluorogenic substrate by purified proteasomes and did not affect the ubiquitination of lysozyme. An excess of the peptide failed t…
Cryptogein affects expression of alpha3, alpha6 and beta1 20S proteasome subunits encoding genes in tobacco.
2001
Twelve a and b 20S proteasome subunits cDNAs showing 70–82% identity with the corresponding genes in Arabidopsis or rice, and features of eukaryotic proteasome subunits were cloned in tobacco. Only b1-tcI 7, a3 and a6, 20S proteasome subunits encoding genes were up-regulated by cryptogein, a proteinaceous elicitor of plant defence reactions. These results led to the hypothesis that the activation of b1-tcI 7, a3 and a6 could induce a specific proteolysis involved in the hypersensitive response and systemic acquired resistance monitored by cryptogein. In eukaryotes, the 26S proteasome is the central multicatalytic proteinase complex comprising two subcomplexes: the 20S core particle that per…
Rapid inactivation and proteasome-mediated degradation of OGG1 contribute to the synergistic effect of hyperthermia on genotoxic treatments
2013
Inhibition of DNA repair has been proposed as a mechanism underlying heat-induced sensitization of tumour cells to some anticancer treatments. Base excision repair (BER) constitutes the main pathway for the repair of DNA lesions induced by oxidizing or alkylating agents. Here, we report that mild hyperthermia, without toxic consequences per se, affects cellular DNA glycosylase activities, thus impairing BER. Exposure of cells to mild hyperthermia leads to a rapid and selective inactivation of OGG1 (8-oxoguanine DNA glycosylase) associated with the relocalisation of the protein into a detergent-resistant cellular fraction. Following its inactivation, OGG1 is ubiquitinated and directed to pro…
Salivary protein profiles and sensitivity to the bitter taste of caffeine.
2011
WOS: 000298381900008; International audience; The interindividual variation in the sensitivity to bitterness is attributed in part to genetic polymorphism at the taste receptor level, but other factors, such as saliva composition, might be involved. In order to investigate this, 2 groups of subjects (hyposensitive, hypersensitive) were selected from 29 healthy male volunteers based on their detection thresholds for caffeine, and their salivary proteome composition was compared. Abundance of 26 of the 255 spots detected on saliva electrophoretic patterns was significantly different between hypo- and hypersensitive subjects. Saliva of hypersensitive subjects contained higher levels of amylase…
Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species
2014
Abstract Vip3 proteins have been described to be secreted by Bacillus thuringiensis during the vegetative growth phase and to display a broad insecticidal spectrum against lepidopteran larvae. Vip3Aa protoxin has been reported to be significantly more toxic to Spodoptera frugiperda than to Spodoptera exigua and differences in the midgut processing have been proposed to be responsible. In contrast, we have found that Vip3Ae is essentially equally toxic against these two species. Proteolysis experiments were performed to study the stability of Vip3A proteins to peptidase digestion and to see whether the differences found could explain differences in toxicity against these two Spodoptera speci…
Combining Hexanoic Acid Plant Priming with Bacillus thuringiensis Insecticidal Activity against Colorado Potato Beetle
2013
Interaction between insect herbivores and host plants can be modulated by endogenous and exogenous compounds present in the source of food and might be successfully exploited in Colorado potato beetle (CPB) pest management. Feeding tests with CPB larvae reared on three solanaceous plants (potato, eggplant and tomato) resulted in variable larval growth rates and differential susceptibility to Bacillus thuringiensis Cry3Aa toxin as a function of the host plant. An inverse correlation with toxicity was observed in Cry3Aa proteolytic patterns generated by CPB midgut brush-border membrane vesicles (BBMV) from Solanaceae-fed larvae, being the toxin most extensively proteolyzed on potato, followed…
Yeast Dun1 Kinase Regulates Ribonucleotide Reductase Inhibitor Sml1 in Response to Iron Deficiency
2014
Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox-active cofactor in many biological processes, including DNA replication and repair. Eukaryotic ribonucleotide reductases (RNRs) are Fe-dependent enzymes that catalyze deoxyribonucleoside diphosphate (dNDP) synthesis. We show here that the levels of the Sml1 protein, a yeast RNR large-subunit inhibitor, specifically decrease in response to both nutritional and genetic Fe deficiencies in a Dun1-dependent but Mec1/Rad53- and Aft1-independent manner. The decline of Sml1 protein levels upon Fe starvation depends on Dun1 forkhead-associated and kinase domains, the 26S proteasome, and the vacuolar pr…
Proteomic Analyses Reveal an Acidic Prime Side Specificity for the Astacin Metalloprotease Family Reflected by Physiological Substrates
2011
Astacins are secreted and membrane-bound metalloproteases with clear associations to many important pathological and physiological processes. Yet with only a few substrates described their biological roles are enigmatic. Moreover, the lack of knowledge of astacin cleavage site specificities hampers assay and drug development. Using PICS (proteomic identification of protease cleavage site specificity) and TAILS (terminal amine isotopic labeling of substrates) degradomics approaches >3000 cleavage sites were proteomically identified for five different astacins. Such broad coverage enables family-wide determination of specificities N- and C-terminal to the scissile peptide bond. Remarkably, me…
The degradation of intracrystalline mollusc shell proteins: a proteomics study of Spondylus gaederopus.
2021
Mollusc shells represent excellent systems for the preservation and retrieval of genuine biomolecules from archaeological or palaeontological samples. As a consequence, the post-mortem breakdown of intracrystalline mollusc shell proteins has been extensively investigated, particularly with regard to its potential use as a "molecular clock" for geochronological applications. But despite seventy years of ancient protein research, the fundamental aspects of diagenesis-induced changes to protein structures and sequences remain elusive. In this study we investigate the degradation of intracrystalline proteins by performing artificial degradation experiments on the shell of the thorny oyster, Spo…
Biodegradable Protein Nanocontainers
2015
The application of synthetic polymers for drug delivery often requires tremendous efforts to ensure biocompatibility and -degradation. To use the body's own substances can help to overcome these problems. Herein, we present the first synthesis of nanocontainers entirely composed of albumin proteins. These protein nanocontainers (PNCs) were loaded with hydrophilic compounds and release of the payload is triggered through natural lysis in vitro in human monocyte-derived dendritic cells (moDCs). No aggregation of PNCs in human blood plasma was observed, indicating stability for blood circulation. As the PNCs were readily taken up by moDCs, they are considered as a promising delivery platform f…