Search results for "purity"
showing 10 items of 356 documents
A setup to develop novel Chemical Isobaric SEparation (CISE)
2020
Abstract Gas catchers are widely used to thermalize nuclear reaction products and subsequently extract them for precision measurements. However, impurities in the inert stopping gas can chemically react with the ions and thus influence the extraction efficiency. So far, chemical reactions in the gas-catcher have not been investigated in detail. Therefore, we are currently building a new setup to develop Chemical Isobaric SEparation (CISE) with the aim to understand the chemistry inside the gas-catcher and to explore its potential as a new technique for separation of isobars. In this paper, we give a short description of the setup together with the ion transportation studies performed via io…
Chloride ion impact on materials for light-emitting electrochemical cells
2013
Small quantities of Cl(-) ions result in dramatic reductions in the performance of ionic transition metal complexes in light-emitting electrochemical cells. Strong ion-pairing between aromatic protons and chloride has been established in both the solid state and solution. X-ray structural determination of 2{[Ir(ppy)2(bpy)][Cl]}·2CH2Cl2·[H3O]·Cl reveals the unusual nature of an impurity encountered in the preparation of [Ir(ppy)2(bpy)][PF6].
Considerations on the modelling and optimisation of resolution of ionisable compounds in extended pH-range columns
2005
Abstract The problems associated to the modelling and optimisation of the chromatographic resolution of mixtures involving ionisable solutes at varying pH and acetonitrile content are discussed. Several retention models that separate the contributions of solute, column and stationary phase, were used. The retention was predicted with low errors in large pH domains (2–12), which was an essential requirement to face the optimisation of resolution. The selected mixture was particularly problematic under the viewpoint of resolution, owing to the excessively diverse acid–base behaviour of solutes. This variety led to sudden drops in retention at different pH for each solute, yielding numerous pe…
Kompakti automatisoitu laser-ionisointijärjestelmä
2011
In an experimental nuclear physics off-line systems are often used in situations where acceleration energies are relatively small. Main benefits are low price and meager radiated laboratory enviroments. In this master’s thesis I discuss mostly about automation which was used in our off-line system. The system was built at the Ion Guide Separator On-Line facility (IGISOL) in Jyväskylä University. The automation set up was made with the Phoenix Contacts inline terminals, which were programmed by using the Labview program. The system consists of thermistor, skimmer handling, mirror handling, gasline parts per billion (ppb) mixing and quadrupole mass spectrometer measurement. There were major p…
Distillation and stripping pilot plants for the JUNO neutrino detector: Design, operations and reliability
2019
Abstract This paper describes the design, construction principles and operations of the distillation and stripping pilot plants tested at the Daya Bay Neutrino Laboratory, with the perspective to adapt these processes, system cleanliness and leak-tightness standards to the final full scale plants to be used for the purification of the liquid scintillator of the JUNO neutrino detector. The main goal of these plants is to remove radio impurities from the liquid scintillator while increasing its optical attenuation length. Purification of liquid scintillator will be performed with a system combining alumina oxide, distillation, water extraction and steam (or N 2 gas) stripping. Such a combined…
Anomalous Muon Knight Shift Behavior in a Cd Single Crystal
1983
For the positive muon implanted in a metal the precession frequency shift due to hyperfine fields can be measured with high precision. This provides means to obtain information about the local electronic structure of a hydrogen like impurity in any metal in the indefinitely dilute impurity concentration. Ref. 1 gives a summary of the muon Knight shift (KS) investigations in 18 nontransition (simple) metals and some transition metals and discusses the results in the context of the electronic structure of hydrogen in metals.
Recycling of 3He from lung magnetic resonance imaging
2011
We have developed the means to recycle 3He exhaled by patients after imaging the lungs using magnetic resonance of hyperpolarized 3He. The exhaled gas is collected in a helium leak proof bag and further compressed into a steel bottle. The collected gas contains about 1–2% of 3He, depending on the amount administered and the number of breaths collected to wash out the 3He gas from the lungs. 3He is separated from the exhaled air using zeolite molecular sieve adsorbent at 77 K followed by a cold head at 8 K. Residual gaseous impurities are finally absorbed by a commercial nonevaporative getter. The recycled 3He gas features high purity, which is required for repolarization by metastability ex…
The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS
2021
The European physical journal / C 81(11), 973 (2021). doi:10.1140/epjc/s10052-021-09544-4
In situobservation of the generation and annealing kinetics of E ′ centres induced in amorphous SiO2by 4.7 eV laser irradiation
2011
The kinetics of E' centers induced in silica by 4.7eV laser irradiation was investigated observing in situ their optical absorption band at 5.8 eV. After exposure the defects decay due to reaction with diffusing molecular hydrogen of radiolytic origin. Hydrogen-related annealing is active also during exposure and competes with the photo-induced generation of the centers until a saturation is reached. The concentrations of E' and H2 at saturation are proportional, so indicating that the UV-induced generation processes of the two species are correlated. These results are consistent with a model in which E' and hydrogen are generated from a common precursor Si-H.
Co-doping with boron and nitrogen impurities in T-carbon
2020
Previously, Ren et al. [Chem. Phys. 518, 69–73, 2019] reported the failure of Boron-Nitrogen (B-N) co-doping as inter B-N bond in T-carbon. In present work, a B-N atom pair is introduced in T-carbon as p-n co-dopant to substitute two carbon atoms in the same carbon tetrahedron and form an intra B-N bond. The stability of this doping system is verified from energy, lattice dynamic, and thermodynamic aspects. According to our B3PW calculations, B-N impurities in this situation can reduce the band gap of T-carbon from 2.95 eV to 2.55 eV, making this material to be a promising photocatalyst. Through the study of its transport properties, we can also conclude that B-N co-doping cannot improve th…