Search results for "quantum dynamics"
showing 10 items of 127 documents
Stock markets and quantum dynamics: A second quantized description
2009
In this paper we continue our description of stock markets in terms of some non-abelian operators which are used to describe the portfolio of the various traders and other observable quantities. After a first prototype model with only two traders, we discuss a more realistic model of market involving an arbitrary number of traders. For both models we find approximated solutions for the time evolution of the portfolio of each trader. In particular, for the more realistic model, we use the stochastic limit approach and a fixed point like approximation. © 2007 Elsevier B.V. All rights reserved
Cohomology, central extensions, and (dynamical) groups
1985
We analyze in this paper the process of group contraction which allows the transition from the Einstenian quantum dynamics to the Galilean one in terms of the cohomology of the Poincare and Galilei groups. It is shown that the cohomological constructions on both groups do not commute with the contraction process. As a result, the extension coboundaries of the Poincare group which lead to extension cocycles of the Galilei group in the “nonrelativistic” limit are characterized geometrically. Finally, the above results are applied to a quantization procedure based on a group manifold.
$O^\star$-algebras and quantum dynamics: some existence results
2008
We discuss the possibility of defining an algebraic dynamics within the settings of O -algebras. Compared to our previous results on this subject, the main improvement here is that we are not assuming the existence of some Hamiltonian for the full physical system. We will show that, under suitable conditions, the dynamics can still be defined via some limiting procedure starting from a given regularized sequence. © 2008 American Institute of Physics.
Algebraic dynamics in O*-algebras: a perturbative approach
2009
In this paper the problem of recovering an algebraic dynamics in a perturbative approach is discussed. The mathematical environment in which the physical problem is considered is that of algebras of unbounded operators endowed with the quasiuniform topology. After some remarks on the domain of the perturbation, conditions are given for the dynamics to exist as the limit of a net of regularized linear maps. © 2002 American Institute of Physics.
Soliton Statistical Mechanics: Statistical Mechanics of the Quantum and Classical Integrable Models
1988
It is shown how the Bethe Ansatz (BA) analysis for the quantum statistical mechanics of the Nonlinear Schrodinger Model generalises to the other quantum integrable models and to the classical statistical mechanics of the classical integrable models. The bose-fermi equivalence of these models plays a fundamental role even at classical level. Two methods for calculating the quantum or classical free energies are developed: one generalises the BA method the other uses functional integral methods. The familiar classical action-angle variables of the integrable models developed for the real line R are used throughout, but the crucial importance of periodic boundary conditions is recognized and t…
Matrix Computations for the Dynamics of Fermionic Systems
2013
In a series of recent papers we have shown how the dynamical behavior of certain classical systems can be analyzed using operators evolving according to Heisenberg-like equations of motions. In particular, we have shown that raising and lowering operators play a relevant role in this analysis. The technical problem of our approach stands in the difficulty of solving the equations of motion, which are, first of all, {\em operator-valued} and, secondly, quite often nonlinear. In this paper we construct a general procedure which significantly simplifies the treatment for those systems which can be described in terms of fermionic operators. The proposed procedure allows to get an analytic solut…
Solving fractional Schroedinger-type spectral problems: Cauchy oscillator and Cauchy well
2014
This paper is a direct offspring of Ref. [J. Math. Phys. 54, 072103, (2013)] where basic tenets of the nonlocally induced random and quantum dynamics were analyzed. A number of mentions was maid with respect to various inconsistencies and faulty statements omnipresent in the literature devoted to so-called fractional quantum mechanics spectral problems. Presently, we give a decisive computer-assisted proof, for an exemplary finite and ultimately infinite Cauchy well problem, that spectral solutions proposed so far were plainly wrong. As a constructive input, we provide an explicit spectral solution of the finite Cauchy well. The infinite well emerges as a limiting case in a sequence of deep…
Multiphoton Quantum Optics and Quantum State Engineering
2007
We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a d…
Quantum repulsive Nonlinear Schrödinger models and their ‘Superconductivity’
1995
Abstract The fundamental role played by the quantum repulsive Nonlinear Schrodinger (NLS) equation in the evolution of our understanding of the phenomenon of superconductivity in appropriate metals at very low temperatures is surveyed. The first major work was that in 1947 by N. N. Bogoliubov, who studied the very physical 3-space-dimensions problem and super fluidity; and the survey takes the form of an actual dedication to that outstanding scientist who died four years ago. The 3-space-dimensions NLS equation is not integrable either classically or quantum mechanically. But a number of recently discovered closely related lattices in one space dimension (one space plus one time dimension) …
Applications of Quantum Mechanics
2013
Quantum mechanics provides the basis for most fields of modern physics and there are many well advanced methods of practical solution of specific and topical problems