Search results for "quantum field"
showing 10 items of 492 documents
Contribution of the $a_1$ meson to the axial nucleon-to-$\Delta$ transition form factors
2018
We analyze the low-$Q^2$ behavior of the axial form factor $G_A(Q^2)$, the induced pseudoscalar form factor $G_P(Q^2)$, and the axial nucleon-to-$\Delta$ transition form factors $C^A_5(Q^2)$ and $C^A_6(Q^2)$. Building on the results of chiral perturbation theory, we first discuss $G_A(Q^2)$ in a chiral effective-Lagrangian model including the $a_1$ meson and determine the relevant coupling parameters from a fit to experimental data. With this information, the form factor $G_P(Q^2)$ can be predicted. For the determination of the transition form factor $C^A_5(Q^2)$ we make use of an SU(6) spin-flavor quark-model relation to fix two coupling constants such that only one free parameter is left.…
Muon capture revisited
1990
Abstract The problem of inclusive muon capture in nuclei is studied by calculating the capture rate in asymmetric infinite nuclear matter and using the local density approximation to evaluate the capture rates in nuclei. It is shown that the method is rather reliable and allows one to improve on approximations used in the past. The need for a strong nuclear renormalization is shown, reducing the capture rates by about a factor two in medium and heavy nuclei. By using standard effective interactions in the spin-isospin channel one can account for this renormalization and one finds a remarkable overall agreement with the measured capture rates for a large list of nuclei through the periodic t…
Kaon Photo- and Electroproduction on Nucleons
1995
We extend previous models of kaon photo- and electroproduction in order to include all six isospin channels. It is found that the inclusion of the few available data for the reactions γp → K 0 Σ − in the fit leads to drastically reduced Born coupling constants g Λ and g Σ . The result suggests the need to include hadronic form factors in a gauge invariant fashion. It is also shown that the K 0 form factor can be seen in K 0 Λ electroproduction.
Limit on the production of a light vector gauge boson in $\phi $ mesondecays with the KLOE detector
2012
We present a new limit on the production of a light dark-force mediator with the KLOE detector at DAPHNE. This boson, called U, has been searched for in the decay phi --> eta U, U --> e+ e-, analyzing the decay eta --> pi0 pi0 pi0 in a data sample of 1.7 fb-1. No structures are observed in the e+e- invariant mass distribution over the background. This search is combined with a previous result obtained from the decay eta --> pi+ pi- pi0, increasing the sensitivity. We set an upper limit at 90% C.L. on the ratio between the U boson coupling constant and the fine structure constant of alpha'/alpha < 1.7x10^-5 for 30<M_U<400 MeV and alpha'/alpha < 8x10^-6 for the sub-region 50<M_U<210 MeV. This…
Quantum kinetic theory for fermions in temporally varying backrounds
2008
We derive quantum kinetic equations for fermions in a homogeneous time-dependent background in presence of decohering collisions, by use of the Schwinger-Keldysh CTP-formalism. The quantum coherence (between particles and antiparticles) is found to arise from new spectral solutions for the dynamical 2-point correlation function in the mean field limit. The physical density matrix $\rho$ and its dynamics is shown to be necessarily dependent on the extrenous information on the system, and expressions that relate $\rho$ to fundamental coherence functions and fermionic particle and antiparticle numbers are derived. For an interacting system we demonstrate how smooth decoherence effects are indu…
Kinetic transport theory with quantum coherence
2008
We derive transport equations for fermions and bosons in spatially or temporally varying backgrounds with special symmetries, by use of the Schwinger-Keldysh formalism. In a noninteracting theory the coherence information is shown to be encoded in new singular shells for the 2-point function. Imposing this phase space structure to the interacting theory leads to a a self-consistent equation of motion for a physcial density matrix, including coherence and a well defined collision integral. The method is applied e.g. to demonstrate how an initially coherent out-of-equlibrium state approaches equlibrium through decoherence and thermalization.
Lagrangians, Hamiltonians and Noether’s Theorem
2015
This chapter is intended to remind the basic notions of the Lagrangian and Hamiltonian formalisms as well as Noether’s theorem. We shall first start with a discrete system with N degrees of freedom, state and prove Noether’s theorem. Afterwards we shall generalize all the previously introduced notions to continuous systems and prove the generic formulation of Noether’s Theorem. Finally we will reproduce a few well known results in Quantum Field Theory.
QCD sum rule calculation ofK ℓ3 form factors
1992
We present a combined finite energy sum rule (FESR) and analytic continuation by duality (ACD) calculation of the (neutral)K l3 decay. We confirm the Callan-Treiman relation and investigate the validity of a linear fit for the form factors. Furthermore, we obtain ζ=−0.1...−0.3, consistent with the mean experimental value ζ=−0.1±0.09.
Effective Field Theory
2015
Effective field theories (EFTs) are a highly important topic in Quantum Field Theory. Here we are going to shortly present some important highlights as well as the renormalization group equations for the Wilson coefficients. Afterwards we shall focus on one illustrative example and present the \(\textit{matching}\) procedure at the one-loop level. The infrared behaviour of EFTs is also covered with this example.
Quantum field theory of dilute homogeneous Bose-Fermi mixtures at zero temperature: General formalism and beyond mean-field corrections
2002
We consider a dilute homogeneous mixture of bosons and spin-polarized fermions at zero temperature. We first construct the formal scheme for carrying out systematic perturbation theory in terms of single particle Green's functions. We introduce a new relevant object, the renormalized boson-fermion T-matrix which we determine to second order in the boson-fermion s-wave scattering length. We also discuss how to incorporate the usual boson-boson T-matrix in mean-field approximation to obtain the total ground state properties of the system. The next order term beyond mean-field stems from the boson-fermion interaction and is proportional to $a_{\scriptsize BF}k_{\scriptsize F}$. The total groun…