Search results for "quantum gravity"

showing 10 items of 126 documents

On the Possibility of Quantum Gravity Effects at Astrophysical Scales

2007

The nonperturbative renormalization group flow of Quantum Einstein Gravity (QEG) is reviewed. It is argued that at large distances there could be strong renormalization effects, including a scale dependence of Newton's constant, which mimic the presence of dark matter at galactic and cosmological scales.

High Energy Physics - TheoryPhysicsGravity (chemistry)Scale (ratio)High Energy Physics::LatticeDark matterAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsGeneral Relativity and Quantum CosmologyRenormalizationTheoretical physicssymbols.namesakeGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Space and Planetary SciencesymbolsQuantum gravityEinsteinConstant (mathematics)QuantumMathematical Physics
researchProduct

A minimal length from the cutoff modes in asymptotically safe quantum gravity

2005

Within asymptotically safe Quantum Einstein Gravity (QEG), the quantum 4-sphere is discussed as a specific example of a fractal spacetime manifold. The relation between the infrared cutoff built into the effective average action and the corresponding coarse graining scale is investigated. Analyzing the properties of the pertinent cutoff modes, the possibility that QEG generates a minimal length scale dynamically is explored. While there exists no minimal proper length, the QEG sphere appears to be "fuzzy" in the sense that there is a minimal angular separation below which two points cannot be resolved by the cutoff modes.

High Energy Physics - TheoryLength scalePhysicsNuclear and High Energy PhysicsSpacetimeFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyManifoldAction (physics)Proper lengthClassical mechanicsHigh Energy Physics - Theory (hep-th)Quantum gravityCutoffQuantumJournal of High Energy Physics
researchProduct

Combinatorics of theSU(2)black hole entropy in loop quantum gravity

2009

We use the combinatorial and number-theoretical methods developed in previous works by the authors to study black hole entropy in the new proposal put forth by Engle, Noui, and Perez. Specifically, we give the generating functions relevant for the computation of the entropy and use them to derive its asymptotic behavior, including the value of the Immirzi parameter and the coefficient of the logarithmic correction.

PhysicsNuclear and High Energy PhysicsConfiguration entropyImmirzi parameterTheoryofComputation_GENERALLoop quantum gravityBinary entropy functionGeneral Relativity and Quantum CosmologyTheoretical physicsClassical mechanicsQuantum gravityBlack hole thermodynamicsEntropy (arrow of time)Joint quantum entropyPhysical Review D
researchProduct

Synchrotron Radiation from the Crab Nebula Discriminates between Models of Space-Time Foam

2003

It has been argued by Jacobson, Liberati and Mattingly that synchrotron radiation from the Crab Nebula imposes a stringent constraint on any modification of the dispersion relations of the electron that might be induced by quantum gravity. We supplement their analysis by deriving the spectrum of synchrotron radiation from the coupling of an electrically-charged particle to an external magnetic fields in the presence of quantum-gravity effects of the general form $(E/M_{QG})^\alpha$. We find that the synchrotron constraint from the Crab Nebula practically excludes $\alpha \lsim 1.74$ for $M_{QG} \sim m_P = 1.2 \times 10^{19}$ GeV. On the other hand, this analysis does not constrain any modif…

PhysicsHigh Energy Physics - TheoryAstrophysics and AstronomyPhotonAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Synchrotron radiationFOS: Physical sciencesAstronomy and AstrophysicsElectronGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsSynchrotronGeneral Relativity and Quantum CosmologyComputational physicslaw.inventionNuclear physicsHigh Energy Physics - PhenomenologyCrab NebulaHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)lawDispersion relationQuantum gravityEquivalence principle
researchProduct

Critical reflections on asymptotically safe gravity

2020

Asymptotic safety is a theoretical proposal for the ultraviolet completion of quantum field theories, in particular for quantum gravity. Significant progress on this program has led to a first characterization of the Reuter fixed point. Further advancement in our understanding of the nature of quantum spacetime requires addressing a number of open questions and challenges. Here, we aim at providing a critical reflection on the state of the art in the asymptotic safety program, specifying and elaborating on open questions of both technical and conceptual nature. We also point out systematic pathways, in various stages of practical implementation, towards answering them. Finally, we also take…

High Energy Physics - TheoryReflection (computer programming)Computer scienceEffective field theoryMaterials Science (miscellaneous)Asymptotic safety in quantum gravityBiophysicsGeneral Physics and AstronomyUnitarityFixed pointQuantum spacetime01 natural sciences530General Relativity and Quantum CosmologyTheoretical High Energy Physics0103 physical sciencesCalculusddc:530High Energy PhysicsQuantum gravitationQuantum field theoryPhysical and Theoretical Chemistry010306 general physicsRunning couplingsMathematical PhysicsStructure (mathematical logic)ObservablesObservablelcsh:QC1-999Asymptotic safetySettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciQuantum gravityRenormalization grouplcsh:Physics
researchProduct

Focus on quantum Einstein gravity

2012

The gravitational asymptotic safety program summarizes the attempts to construct a consistent and predictive quantum theory of gravity within Wilson's generalized framework of renormalization. Its key ingredient is a non-Gaussian fixed point of the renormalization group flow which controls the behavior of the theory at trans-Planckian energies and renders gravity safe from unphysical divergences. Provided that the fixed point comes with a finite number of ultraviolet-attractive (relevant) directions, this construction gives rise to a consistent quantum field theory which is as predictive as an ordinary, perturbatively renormalizable one. This opens up the exciting possibility of establishin…

PhysicsTheoretical physicsClassical mechanicsEntropic gravityHořava–Lifshitz gravityGeneral relativityAsymptotic safety in quantum gravityGeneral Physics and AstronomyQuantum gravityf(R) gravitySemiclassical gravityUltraviolet fixed pointNew Journal of Physics
researchProduct

Loop quantum gravity and Planck-size black hole entropy

2007

The Loop Quantum Gravity (LQG) program is briefly reviewed and one of its main applications, namely the counting of black hole entropy within the framework is considered. In particular, recent results for Planck size black holes are reviewed. These results are consistent with an asymptotic linear relation (that fixes uniquely a free parameter of the theory) and a logarithmic correction with a coefficient equal to -1/2. The account is tailored as an introduction to the subject for non-experts.

PhysicsHistoryLogarithmFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Loop quantum gravityLinear-quadratic-Gaussian controlGeneral Relativity and Quantum CosmologyComputer Science ApplicationsEducationsymbols.namesakeTheoretical physicsGeneral Relativity and Quantum CosmologysymbolsLinear relationPlanckBlack hole thermodynamicsFree parameter
researchProduct

U(N) invariant dynamics for a simplified loop quantum gravity model

2011

The implementation of the dynamics in Loop Quantum Gravity (LQG) is still an open problem. Here, we discuss a tentative dynamics for the simplest class of graphs in LQG: Two vertices linked with an arbitrary number of edges. We use the recently introduced U(N) framework in order to construct SU(2) invariant operators and define a global U(N) symmetry that will select the homogeneous/isotropic states. Finally, we propose a Hamiltonian operator invariant under area-preserving deformations of the boundary surface and we identify possible connections of this model with Loop Quantum Cosmology.

PhysicsSurface (mathematics)History010308 nuclear & particles physicsOpen problemFOS: Physical sciencesBoundary (topology)General Relativity and Quantum Cosmology (gr-qc)Loop quantum gravityLinear-quadratic-Gaussian control01 natural sciencesGeneral Relativity and Quantum CosmologySymmetry (physics)Computer Science ApplicationsEducation0103 physical sciencesddc:530Invariant (mathematics)010306 general physicsMathematical physicsLoop quantum cosmologyJournal of Physics: Conference Series
researchProduct

The unitary conformal field theory behind 2D Asymptotic Safety

2015

Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in $d>2$ dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge $c=25$. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety progra…

PhysicsHigh Energy Physics - TheoryNuclear and High Energy Physics010308 nuclear & particles physicsConformal field theoryAsymptotic safety in quantum gravityFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Mathematical Physics (math-ph)Fixed pointString theory01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationTheoretical physicsHigh Energy Physics::TheoryHigh Energy Physics - Theory (hep-th)0103 physical sciencesQuantum gravity010306 general physicsCentral chargeMathematical PhysicsInduced gravity
researchProduct

Bare Action and Regularized Functional Integral of Asymptotically Safe Quantum Gravity

2009

Investigations of Quantum Einstein Gravity (QEG) based upon the effective average action employ a flow equation which does not contain any ultraviolet (UV) regulator. Its renormalization group trajectories emanating from a non-Gaussian fixed point define asymptotically safe quantum field theories. A priori these theories are, somewhat unusually, given in terms of their effective rather than bare action. In this paper we construct a functional integral representation of these theories. We fix a regularized measure and show that every trajectory of effective average actions, depending on an IR cutoff only, induces an associated trajectory of bare actions which depend on a UV cutoff. Together …

PhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsAsymptotic safety in quantum gravityFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Renormalization groupGeneral Relativity and Quantum CosmologyRenormalizationClassical mechanicsHigh Energy Physics - Theory (hep-th)Regularization (physics)Path integral formulationQuantum gravityQuantum field theoryEffective action
researchProduct