Search results for "quantum optic"

showing 10 items of 153 documents

Exact solution of generalized Tavis - Cummings models in quantum optics

1996

Quantum inverse methods are developed for the exact solution of models which describe N two-level atoms interacting with one mode of the quantized electromagnetic field containing an arbitrary number of excitations M. Either a Kerr-type nonlinearity or a Stark-shift term can be included in the model, and it is shown that these two cases can be mapped from one to the other. The method of solution provides a general framework within which many related problems can similarly be solved. Explicit formulae are given for the Rabi splitting of the models for some N and M, on- and off-resonance. It is also shown that the solution of the pure Tavis - Cummings model can be reduced to solving a homogen…

Electromagnetic fieldQuantum opticsExplicit formulaeGeneral Physics and AstronomyExact differential equationStatistical and Nonlinear PhysicsNonlinear systemExact solutions in general relativityQuantum mechanicsOrdinary differential equationQuantumComputer Science::DatabasesMathematical PhysicsMathematicsMathematical physicsJournal of Physics A: Mathematical and General
researchProduct

Journeys from quantum optics to quantum technology

2017

Sir Peter Knight is a pioneer in quantum optics which has now grown to an important branch of modern physics to study the foundations and applications of quantum physics. He is leading an effort to develop new technologies from quantum mechanics. In this collection of essays, we recall the time we were working with him as a postdoc or a PhD student and look at how the time with him has influenced our research.

EngineeringTechnologyAtomic and Molecular Physics and OpticEmerging technologiesQuantum technologiesTRAPPED IONQuantum physicsSINGLE-ATOM0205 Optical PhysicsPhysics - History and Philosophy of PhysicsNONCLASSICAL MOTIONAL STATESFOS: Physical sciences01 natural sciences010305 fluids & plasmasTheoretical physicsQC350Engineering0202 Atomic Molecular Nuclear Particle And Plasma Physics0103 physical sciencesPERIODIC LEVEL-CROSSINGSStatistical and Nonlinear Physics; Electronic Optical and Magnetic Materials; Atomic and Molecular Physics and Optics; Electrical and Electronic EngineeringHistory and Philosophy of Physics (physics.hist-ph)ULTRAFAST MOLECULAR-DYNAMICSElectrical and Electronic Engineering010306 general physicsQCQuantum opticsScience & Technologybusiness.industryElectronic Optical and Magnetic MaterialModern physics0906 Electrical And Electronic EngineeringINDUCED ELECTRON-DIFFRACTIONStatistical and Nonlinear PhysicsEngineering Electrical & ElectronicOpticsModern physicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsQuantum technologyQuantum theoryINDUCED CONTINUUM STRUCTUREHIGH-HARMONIC-GENERATIONENTANGLED COHERENT STATESQuantum Physics (quant-ph)businessBAND SQUEEZED VACUUMStatistical and Nonlinear Physic
researchProduct

Large-photon-number limit and the essential singularity in finite quantum electrodynamics

1976

It is shown that the essential singularity in finite quantum electrodynamics can be located by considering only those diagrams with a large number of photons exchanged in the single-fermion loop, without photons emitted and absorbed on a fermion line. (AIP)

Essential singularityPhysicsQuantum opticsOpen quantum systemPhotonHigh Energy Physics::LatticeQuantum mechanicsQuantum electrodynamicsStochastic electrodynamicsCavity quantum electrodynamicsGauge theoryQuantum field theoryPhysical Review D
researchProduct

Regression of high-dimensional angular momentum states of light

2023

The Orbital Angular Momentum (OAM) of light is an infinite-dimensional degree of freedom of light with several applications in both classical and quantum optics. However, to fully take advantage of the potential of OAM states, reliable detection platforms to characterize generated states in experimental conditions are needed. Here, we present an approach to reconstruct input OAM states from measurements of the spatial intensity distributions they produce. To obviate issues arising from intrinsic symmetry of Laguerre-Gauss modes, we employ a pair of intensity profiles per state projecting it only on two distinct bases, showing how this allows to uniquely recover input states from the collect…

FOS: Computer and information sciencesQuantum PhysicsComputer Science - Machine Learningphotonicquantum opticFOS: Physical sciencesGeneral Physics and Astronomyorbital angular momentum of lightSettore FIS/03 - Fisica Della MateriaMachine Learning (cs.LG)machine learningquantum informationQuantum Physics (quant-ph)Optics (physics.optics)Physics - OpticsPhysical Review Research
researchProduct

Dissipative solitons for mode-locked lasers

2012

International audience; Dissipative solitons are localized formations of an electromagnetic field that are balanced through an energy exchange with the environment in presence of nonlinearity, dispersion and/or diffraction. Their growing use in the area of passively mode-locked lasers is remarkable: the concept of a dissipative soliton provides an excellent framework for understanding complex pulse dynamics and stimulates innovative cavity designs. Reciprocally, the field of mode-locked lasers serves as an ideal playground for testing the concept of dissipative solitons and revealing their unusual dynamics. This Review provides basic definitions of dissipative solitons, summarizes their imp…

Field (physics)NORMAL-DISPERSIONOPTICAL SOLITONSBOUND-STATES01 natural sciencesSIMILARITON FIBER LASERlaw.invention010309 opticsDissipative solitonOpticslawFiber laser0103 physical sciencesGINZBURG-LANDAU EQUATION010306 general physicsNonlinear Sciences::Pattern Formation and SolitonsCAVITY SOLITONSQuantum opticsPhysicsLOCALIZED STRUCTURESbusiness.industrySaturable absorptionLaserAtomic and Molecular Physics and OpticsSATURABLE-ABSORBERElectronic Optical and Magnetic MaterialsBiophotonicsNonlinear Sciences::Exactly Solvable and Integrable SystemsQuantum electrodynamicsDissipative systembusinessTI-SAPPHIRE LASERPULSE ENERGYNature Photonics
researchProduct

Coherent Control of Stimulated Emission inside one dimensional Photonic Crystals:Strong Coupling regime

2006

The present paper discusses the stimulated emission, in strong coupling regime, of an atom embedded inside a one dimensional (1D) Photonic Band Gap (PBG) cavity which is pumped by two counter-propagating laser beams. Quantum electrodynamics is applied to model the atom-field interaction, by considering the atom as a two level system, the e.m. field as a superposition of normal modes, the coupling in dipole approximation, and the equations of motion in Wigner-Weisskopf and rotating wave approximations. In addition, the Quasi Normal Mode (QNM) approach for an open cavity is adopted, interpreting the local density of states (LDOS) as the local density of probability to excite one QNM of the ca…

Field (physics)Physics::Opticsquasinormal modeslaw.inventionPhotonic crystalslawElectromagnetismNormal modeQuantum mechanicsAtomSpontaneous emissionPhysics::Atomic PhysicsEmission spectrumBoundary value problemStimulated emissionQuantumPhysicsQuantum opticsLocal density of statesCondensed matter physicsCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsClassical mechanicsCoherent controlOptical cavityExcited stateDensity of statesAtomic physics
researchProduct

Suppression law of quantum states in a 3D photonic fast Fourier transform chip

2015

The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong–Ou–Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fouri…

Genetics and Molecular Biology (all)Photonquantum opticScienceFast Fourier transformintegrated photonics; quantum information; linear optics; FourierphotonicsGeneral Physics and AstronomyPhysics::Optics02 engineering and technologyInterference (wave propagation)01 natural sciencesBiochemistryGeneral Biochemistry Genetics and Molecular BiologySettore FIS/03 - Fisica Della MateriaArticlesymbols.namesakequantumPhysics and Astronomy (all)OpticsQuantum statequantum information0103 physical sciencesboson samplingquantum opticsQuantum information010306 general physicsIntegrated photonic circuitsPhysicsQuantum opticsMultidisciplinaryphotonicbusiness.industryQChemistry (all)General Chemistry021001 nanoscience & nanotechnologyquantum computerFourier transformLawBiochemistry Genetics and Molecular Biology (all); Chemistry (all); Physics and Astronomy (all)symbolsPhotonics0210 nano-technologybusiness
researchProduct

Entanglement in continuous-variable systems: recent advances and current perspectives

2007

We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures, and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillabil…

High Energy Physics - TheoryStatistics and ProbabilityINFORMATIONField (physics)Computer scienceGaussianStructure (category theory)FOS: Physical sciencesGeneral Physics and AstronomyQuantum entanglementMultipartite entanglementUnitary statesymbols.namesakeRADIATION-FIELDSEPARABILITY CRITERIONStatistical physicsQuantum informationNORMAL FORMSCondensed Matter - Statistical MechanicsMathematical PhysicsQuantum opticsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)ERROR-CORRECTIONENTROPYStatistical and Nonlinear PhysicsQUANTUM TELEPORTATION NETWORK MIXED-STATE ENTANGLEMENT GAUSSIAN STATES SEPARABILITY CRITERION ERROR-CORRECTION RADIATION-FIELD NORMAL FORMS INEQUALITIES INFORMATION ENTROPYMathematical Physics (math-ph)Quantum PhysicsMIXED-STATE ENTANGLEMENTGAUSSIAN STATESHigh Energy Physics - Theory (hep-th)QUANTUM TELEPORTATION NETWORKModeling and SimulationINEQUALITIESsymbolsQuantum Physics (quant-ph)Physics - OpticsOptics (physics.optics)
researchProduct

Atoms, Photons and Entanglement for Quantum Information Technologies

2011

Atoms, Photons and Entanglement for Quantum Information Technologies Julio T. Barreiro a, Dieter Meschede b, Eugene Polzik c, E. Arimondo d, Fabrizio Illuminati e, Luigi Lugiato f a Institut fur Experimentalphysik, Universitat Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria b Institut fur Angewandte Physik, Universitat Bonn, Wegelerstr. 8, D-53115 Bonn, Germany c Niels Bohr Institute, Danish Quantum Optics Center QUANTOP, Copenhagen University, Blegdamsvej 17, 2100 Copenhagen, Denmark d Dipartimento di Fisica, Universita di Pisa, Lgo Buonarroti 3, I-56122 Pisa, Italy e Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (…

IonsQuantum opticsAtomsPhotonsQuantum discordQuantum networkPhotonComputer scienceQuantum sensorCavity quantum electrodynamicsQuantum simulatorQuantum entanglementIonQuantum technologyOpen quantum systemQuantum computationAtomGeneral Earth and Planetary SciencesQuantum simulationQuantum EntanglementQuantum informationAmplitude damping channelHumanitiesGeneral Environmental ScienceQuantum computerProcedia Computer Science
researchProduct

Localizing quantum phase slips in one-dimensional Josephson junction chains

2013

Published version of an article in the journal: New Journal of Physics. Also available from the publisher at: http://dx.doi.org/10.1088/1367-2630/15/9/095014 Open Access We studied quantum phase-slip (QPS) phenomena in long one-dimensional Josephson junction series arrays with tunable Josephson coupling. These chains were fabricated with as many as 2888 junctions, where one sample had a separately tunable link in the middle of the chain. Measurements were made of the zero-bias resistance, R0, as well as current-voltage characteristics (IVC). The finite R0 is explained by QPS and shows an exponential dependence on with a distinct change in the exponent at R 0 = RQ = h/4e2. When R0 > R Q, the…

Josephson effectPhase (waves)General Physics and AstronomyVDP::Mathematics and natural science: 400::Physics: 430Condensed Matter::Superconductivitydifferential resistancesquantum opticsQuantumAstrophysics::Galaxy Astrophysicsexponential dependencePhysicscritical voltagesSeries (mathematics)Condensed matter physicsJosephson couplingJosephson junction series arraysJosephson junction devicesCoulomb blockadequantum phasezero-bias resistanceState (functional analysis)Condensed Matter::Mesoscopic Systems and Quantum Hall EffectJosephson-junctionExponential functionchainsExponentNew Journal of Physics
researchProduct