6533b851fe1ef96bd12aa256

RESEARCH PRODUCT

Localizing quantum phase slips in one-dimensional Josephson junction chains

David SchaefferJack LidmarJ. JohanssonDavid B. HavilandYağız AzizoğluAdem Ergül

subject

Josephson effectPhase (waves)General Physics and AstronomyVDP::Mathematics and natural science: 400::Physics: 430Condensed Matter::Superconductivitydifferential resistancesquantum opticsQuantumAstrophysics::Galaxy Astrophysicsexponential dependencePhysicscritical voltagesSeries (mathematics)Condensed matter physicsJosephson couplingJosephson junction series arraysJosephson junction devicesCoulomb blockadequantum phasezero-bias resistanceState (functional analysis)Condensed Matter::Mesoscopic Systems and Quantum Hall EffectJosephson-junctionExponential functionchainsExponent

description

Published version of an article in the journal: New Journal of Physics. Also available from the publisher at: http://dx.doi.org/10.1088/1367-2630/15/9/095014 Open Access We studied quantum phase-slip (QPS) phenomena in long one-dimensional Josephson junction series arrays with tunable Josephson coupling. These chains were fabricated with as many as 2888 junctions, where one sample had a separately tunable link in the middle of the chain. Measurements were made of the zero-bias resistance, R0, as well as current-voltage characteristics (IVC). The finite R0 is explained by QPS and shows an exponential dependence on with a distinct change in the exponent at R 0 = RQ = h/4e2. When R0 > R Q, the IVC clearly shows a remnant of the Coulomb blockade, which evolves to a zero-current state with a sharp critical voltage as E J is tuned to a smaller value. The zero-current state below the critical voltage is due to coherent QPSs and we show that these are enhanced when the central link is weaker than all other links. Above the critical voltage, a negative, differential resistance is observed, which nearly restores the zero-current state.

https://doi.org/10.1088/1367-2630/15/9/095014