0000000000188421
AUTHOR
J. Johansson
Quantum annealing with manufactured spins.
Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. Johnson et al. use quantum annealing to find the ground state of an artificial Ising spin system comprised of an array of eight superconducting flux qubits with programmable spin–spin couplings. With an increased number of spins, the system may provide a practical physical means to implement quantum algorithms, possibly enabling more effective approaches towards solving certain classes of hard combinatorial…
Superconductor-Diamond Hybrid Quantum System
This chapter describes recent progress on research into superconducting flux qubit, NV diamond, and superconductor-diamond hybrid quantum systems. First, we describe important physical properties of superconducting macroscopic artificial atoms i.e., the tunability of the qubit energy level spacing, the coherence property, an example of strong coupling to another quantum system such as an LC harmonic oscillator, and qubit state readout through a Josephson bifurcation amplifier. We then introduce the NV center in diamond as an intriguing candidate for quantum information processing, which offers excellent multiple accessibility via visible light, microwaves and magnetic fields. Finally, we de…
Phase sticking in one-dimensional Josephson junction chains
Published version of an article in the journal: Physical Review B - Condensed Matter and Materials Physics. Also available from the publisher at: http://dx.doi.org/10.1103/PhysRevB.88.104501 We studied current-voltage characteristics of long one-dimensional Josephson junction chains with Josephson energy much larger than charging energy, EJ EC. In this regime, typical I-V curves of the samples consist of a supercurrent-like branch at low-bias voltages followed by a voltage-independent chain current branch, Ichain at high bias. Our experiments showed that Ichain is not only voltage-independent but it is also practically temperature-independent up to T=0.7TC. We have successfully model the tr…
Spin transport in ferromagnetic/normal-metal tunnel junction arrays
Published version of an article in the journal: Physical Review B. Also available from the publisher:http://dx.doi.org/10.1103/PhysRevB.85.094421 An array of alternating ferromagnetic and normal-metal islands separated by small tunnel junctions is theoretically investigated in the sequential tunneling regime. A numerical Monte Carlo method is used to calculate the transport properties. The spin-dependent tunneling currents give rise to nonequilibrium spin accumulation on the normal island. The tunneling magneto resistance (TMR) is calculated for a large range of array parameters. The TMR oscillates with bias voltage and can become negative for certain array parameters. We show that the long…
Localizing quantum phase slips in one-dimensional Josephson junction chains
Published version of an article in the journal: New Journal of Physics. Also available from the publisher at: http://dx.doi.org/10.1088/1367-2630/15/9/095014 Open Access We studied quantum phase-slip (QPS) phenomena in long one-dimensional Josephson junction series arrays with tunable Josephson coupling. These chains were fabricated with as many as 2888 junctions, where one sample had a separately tunable link in the middle of the chain. Measurements were made of the zero-bias resistance, R0, as well as current-voltage characteristics (IVC). The finite R0 is explained by QPS and shows an exponential dependence on with a distinct change in the exponent at R 0 = RQ = h/4e2. When R0 > R Q, the…
Probing High Frequency Noise with Macroscopic Resonant Tunneling
We have developed a method for extracting the high-frequency noise spectral density of an rf-SQUID flux qubit from macroscopic resonant tunneling (MRT) rate measurements. The extracted noise spectral density is consistent with that of an ohmic environment up to frequencies $~$4 GHz. We have also derived an expression for the MRT line shape expected for a noise spectral density consisting of such a broadband ohmic component and an additional strongly peaked low-frequency component. This hybrid model provides an excellent fit to experimental data across a range of tunneling amplitudes and temperatures.