0000000000141909

AUTHOR

David Schaeffer

Quantum Phase Slips in one-dimensional Josephson Junction Chains

We have studied quantum phase-slip (QPS) phenomena in long one-dimensional Josephson junction series arrays with tunable Josephson coupling. These chains were fabricated with as many as 2888 junctions, where one sample had a tunable weak link in the middle. Measurements were made of the zero-bias resistance, $R_0$, as well as current-voltage characteristics (IVC). The finite $R_0$ is explained by QPS and shows an exponential dependence on $\sqrt{E_J/E_C}$ with a distinct change in the exponent at $R_0=R_Q=h/4e^2$. When $R_0 > R_Q$ the IVC clearly shows a remnant of the Coulomb blockade, which evolves to a zero-current state with a sharp critical voltage as $E_J$ is tuned to a smaller val…

research product

Phase sticking in one-dimensional Josephson junction chains

Published version of an article in the journal: Physical Review B - Condensed Matter and Materials Physics. Also available from the publisher at: http://dx.doi.org/10.1103/PhysRevB.88.104501 We studied current-voltage characteristics of long one-dimensional Josephson junction chains with Josephson energy much larger than charging energy, EJ EC. In this regime, typical I-V curves of the samples consist of a supercurrent-like branch at low-bias voltages followed by a voltage-independent chain current branch, Ichain at high bias. Our experiments showed that Ichain is not only voltage-independent but it is also practically temperature-independent up to T=0.7TC. We have successfully model the tr…

research product

Localizing quantum phase slips in one-dimensional Josephson junction chains

Published version of an article in the journal: New Journal of Physics. Also available from the publisher at: http://dx.doi.org/10.1088/1367-2630/15/9/095014 Open Access We studied quantum phase-slip (QPS) phenomena in long one-dimensional Josephson junction series arrays with tunable Josephson coupling. These chains were fabricated with as many as 2888 junctions, where one sample had a separately tunable link in the middle of the chain. Measurements were made of the zero-bias resistance, R0, as well as current-voltage characteristics (IVC). The finite R0 is explained by QPS and shows an exponential dependence on with a distinct change in the exponent at R 0 = RQ = h/4e2. When R0 > R Q, the…

research product