Search results for "quantum optic"

showing 10 items of 153 documents

Resonant atom-field interaction in large-size coupled-cavity arrays

2011

We consider an array of coupled cavities with staggered inter-cavity couplings, where each cavity mode interacts with an atom. In contrast to large-size arrays with uniform-hopping rates where the atomic dynamics is known to be frozen in the strong-hopping regime, we show that resonant atom-field dynamics with significant energy exchange can occur in the case of staggered hopping rates even in the thermodynamic limit. This effect arises from the joint emergence of an energy gap in the free photonic dispersion relation and a discrete frequency at the gap's center. The latter corresponds to a bound normal mode stemming solely from the finiteness of the array length. Depending on which cavity …

PhysicsQuantum opticsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsBand gapCavity quantum electrodynamicsFOS: Physical sciencesMolecular physicsAtomic and Molecular Physics and OpticsNormal modeExcited stateDispersion relationThermodynamic limitAtomMesoscale and Nanoscale Physics (cond-mat.mes-hall)coupled cavities quantum opticsQuantum Physics (quant-ph)
researchProduct

Quantum state transfer in imperfect artificial spin networks

2005

High-fidelity quantum computation and quantum state transfer are possible in short spin chains. We exploit a system based on a dispersive qubit-boson interaction to mimic XY coupling. In this model, the usually assumed nearest-neighbors coupling is no more valid: all the qubits are mutually coupled. We analyze the performances of our model for quantum state transfer showing how pre-engineered coupling rates allow for nearly optimal state transfer. We address a setup of superconducting qubits coupled to a microstrip cavity in which our analysis may be applied.

PhysicsQuantum opticsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciencesQuantum numberAtomic and Molecular Physics and OpticsQubitQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin networkQuantum information scienceSuperconducting quantum computingQuantum Physics (quant-ph)Quantum computerSpin-½
researchProduct

Diffusion and transfer of entanglement in an array of inductively coupled flux qubits

2007

A theoretical scheme to generate multipartite entangled states in a Josephson planar-designed architecture is reported. This scheme improves the one published in [Phys. Rev. B 74, 104503 (2006)] since it speeds up the generation of W entangled states in an MxN array of inductively coupled Josephson flux qubits by reducing the number of necessary steps. In addition, the same protocol is shown to be able to transfer the W state from one row to the other.

PhysicsQuantum opticsQuantum PhysicsFlux qubitCondensed Matter - SuperconductivityCluster stateflux qubitsQuantum computersFOS: Physical sciencesQuantum PhysicsQuantum entanglementCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsSuperconductivity (cond-mat.supr-con)Condensed Matter - Other Condensed MatterMultipartiteQuantum mechanicsDiffusion (business)W stateAtomic physicsQuantum Physics (quant-ph)Superconducting quantum computingOther Condensed Matter (cond-mat.other)Quantum computerPhysical Review B
researchProduct

Quantum cloning in spin networks

2004

We introduce an approach to quantum cloning based on spin networks and we demonstrate that phase covariant cloning can be realized using no external control but only with a proper design of the Hamiltonian of the system. In the 1 -> 2 cloning we find that the XY model saturates the value for the fidelity of the optimal cloner and gives values comparable to it in the genera N -> M case. We finally discuss the effect of external noise. Our protocol is much more robust to decoherence than a conventional procedure based on quantum gates.

PhysicsQuantum opticsQuantum PhysicsQuantum decoherenceCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciencesAtomic and Molecular Physics and Optics; Physics and Astronomy (all)Quantum PhysicsQuantum numberAtomic and Molecular Physics and Opticssymbols.namesakePhysics and Astronomy (all)Quantum mechanicsAtomic and Molecular PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)symbolsSpin networkQuantum cloningand OpticsHamiltonian (quantum mechanics)Quantum information scienceQuantum Physics (quant-ph)Quantum
researchProduct

Heat flux and quantum correlations in dissipative cascaded systems

2015

We study the dynamics of heat flux in the thermalization process of a pair of identical quantum systems that interact dissipatively with a reservoir in a cascaded fashion. Despite that the open dynamics of the bipartite system $S$ is globally Lindbladian, one of the subsystems ``sees'' the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a nonexponential time behavior which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of $S$ and show that the presence of correlations at th…

PhysicsQuantum opticsQuantum PhysicsQuantum decoherenceQuantum computers01 natural sciencesAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaDynamics010305 fluids & plasmasHeat fluxQuantum electronicsQubitQuantum mechanics0103 physical sciencesDissipative systemTrace distanceQuantum PhysicQuantum information010306 general physicsQuantumHarmonic oscillator
researchProduct

Collisional picture of quantum optics with giant emitters

2020

The effective description of the weak interaction between an emitter and a bosonic field as a sequence of two-body collisions provides a simple intuitive picture compared to traditional quantum optics methods as well as an effective calculation tool of the joint emitter-field dynamics. Here, this collisional approach is extended to many emitters (atoms or resonators), each generally interacting with the field at many coupling points ("giant" emitter). In the regime of negligible delays, the unitary describing each collision in particular features a contribution of a chiral origin resulting in an effective Hamiltonian. The picture is applied to derive a Lindblad master equation (ME) of a set…

PhysicsQuantum opticsQuantum PhysicsWaveguide quantum optics giant atoms collisional modelFOS: Physical sciences01 natural sciences010305 fluids & plasmasQuantum mechanics0103 physical sciencesPhysics::Accelerator PhysicsMathematics::Metric GeometryQuantum Physics (quant-ph)Nuclear Experiment010306 general physicsPhysical Review Research
researchProduct

Analog Grover search by adiabatic passage in a cavity-laser-atom system

2008

A physical implementation of the adiabatic Grover search is theoretically investigated in a system of N identical three-level atoms trapped in a single mode cavity. Some of the atoms are marked through the presence of an energy gap between their two ground states. The search is controlled by two partially delayed lasers which allow a deterministic adiabatic transfer from an initially entangled state to the marked states. Pulse schemes are proposed to satisfy the Grover speedup either exactly or approximately, and the success rate of the search is calculated.

PhysicsQuantum opticsQuantum Physics[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]FOS: Physical sciencesOne-way quantum computerLaserAdiabatic quantum computation01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmaslaw.inventionPulse (physics)[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]lawQuantum mechanics0103 physical sciencesAtom010306 general physicsAdiabatic processQuantum Physics (quant-ph)[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]ComputingMilieux_MISCELLANEOUSQuantum computer
researchProduct

High-dimensional one-way quantum processing implemented on d-level cluster states

2019

Taking advantage of quantum mechanics for executing computational tasks faster than classical computers1 or performing measurements with precision exceeding the classical limit2,3 requires the generation of specific large and complex quantum states. In this context, cluster states4 are particularly interesting because they can enable the realization of universal quantum computers by means of a ‘one-way’ scheme5, where processing is performed through measurements6. The generation of cluster states based on sub-systems that have more than two dimensions, d-level cluster states, provides increased quantum resources while keeping the number of parties constant7, and also enables novel algorithm…

PhysicsQuantum opticsQuantum opticsQuantum informationGeneral Physics and AstronomySettore ING-INF/02 - Campi ElettromagneticiQuantum entanglementTopologySettore ING-INF/01 - Elettronica01 natural sciences010305 fluids & plasmasMicroresonatorQuantum state0103 physical sciencesCluster (physics)Quantum information010306 general physicsQuantum information scienceQuantumQCQuantum computerNature Physics
researchProduct

Quantum control of ground-state rotational coherence in a linear molecule

2000

We present an experimental and theoretical investigation of the quantum control of ground-state rotational coherence in a linear molecule. A sequence of two temporally separated laser pulses creates a rotational superposition state in ${\mathrm{CO}}_{2}$ whose evolution is monitored through a polarization technique. We study the influence of the phase difference between the two pulses. We show that the overlapping of the two wave packets, produced by each pulse, gives rise to quantum interference that affects the orientational anisotropy of the sample. Because of the large number of coherently excited levels, the interference produces well-separated temporal structures, whose magnitude can …

PhysicsQuantum opticsQuantum phase transitionWAVE-PACKETSTRANSITIONSAtomic and Molecular Physics and OpticsPULSESTIME-RESOLVED DYNAMICSQuantum error correctionExcited stateQuantum mechanicsPrincipal quantum numberINDUCED CONTINUUM STRUCTURECoherent statesIONIZATIONAtomic physicsLASER CONTROLGround stateCoherence (physics)
researchProduct

Fast Control of Quantum States in Quantum Dots: Limits due to Decoherence

2005

We study the kinetics of confined carrier-phonon system in a quantum dot under fast optical driving and discuss the resulting limitations to fast coherent control over the quantum state in such systems.

PhysicsQuantum opticsQuantum technologyCondensed Matter::Materials ScienceOpen quantum systemQuantum error correctionQuantum stateQuantum mechanicsQuantum sensorCavity quantum electrodynamicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectQuantum dissipation
researchProduct