Search results for "quantum optics"
showing 10 items of 143 documents
Analog Grover search by adiabatic passage in a cavity-laser-atom system
2008
A physical implementation of the adiabatic Grover search is theoretically investigated in a system of N identical three-level atoms trapped in a single mode cavity. Some of the atoms are marked through the presence of an energy gap between their two ground states. The search is controlled by two partially delayed lasers which allow a deterministic adiabatic transfer from an initially entangled state to the marked states. Pulse schemes are proposed to satisfy the Grover speedup either exactly or approximately, and the success rate of the search is calculated.
High-dimensional one-way quantum processing implemented on d-level cluster states
2019
Taking advantage of quantum mechanics for executing computational tasks faster than classical computers1 or performing measurements with precision exceeding the classical limit2,3 requires the generation of specific large and complex quantum states. In this context, cluster states4 are particularly interesting because they can enable the realization of universal quantum computers by means of a ‘one-way’ scheme5, where processing is performed through measurements6. The generation of cluster states based on sub-systems that have more than two dimensions, d-level cluster states, provides increased quantum resources while keeping the number of parties constant7, and also enables novel algorithm…
Quantum control of ground-state rotational coherence in a linear molecule
2000
We present an experimental and theoretical investigation of the quantum control of ground-state rotational coherence in a linear molecule. A sequence of two temporally separated laser pulses creates a rotational superposition state in ${\mathrm{CO}}_{2}$ whose evolution is monitored through a polarization technique. We study the influence of the phase difference between the two pulses. We show that the overlapping of the two wave packets, produced by each pulse, gives rise to quantum interference that affects the orientational anisotropy of the sample. Because of the large number of coherently excited levels, the interference produces well-separated temporal structures, whose magnitude can …
Fast Control of Quantum States in Quantum Dots: Limits due to Decoherence
2005
We study the kinetics of confined carrier-phonon system in a quantum dot under fast optical driving and discuss the resulting limitations to fast coherent control over the quantum state in such systems.
A simple method for counting the number of trapped ions in an ion trap
1996
The number of stored Ca\(^+\) ions in an ion trap was measured optically by utilizing the metastable states. All the ions trapped are first pumped into the metastable \(D\) states. The ions in the metastable \(D\) states are transferred to the ground \(S\) state via the \(P\) state by exciting a \(D\rightarrow P\) transition. Each ion then emits one photon through a subsequent \(P\rightarrow S\) spontaneous emission. Thus, the number of photons is the same as the number of trapped ions initially in the metastable states. When a fraction of all the stored ions are pumped into the metastable states, the method is still applicable if the fraction of the ions is known.
Erratum: Atom-field dressed states in slow-light waveguide QED [Phys. Rev. A93, 033833 (2016)]
2016
We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-…
Stroboscopic Space Tag for Optical Time-Resolved Measurements with a Charge Coupled Device Detector
2018
Time-resolved measurements are extensively employed in the study of light–matter interaction at the nanoscale such as the exciton dynamics in semiconductors or the ultrafast intraband transitions in metals. Importantly, single-photon correlation, quantum state tomography, and other techniques devoted to the characterization of quantum optics systems rely on time-resolved experiments, whose resolution which is bound to the time response of the detector and related electronics. For this reason, multiplexing or beam deflection techniques have been recently proposed to overcome the detector resolution and thus measure the final photon distribution characteristics. Taking advantage of both strat…
One-dimensional twice kicked hydrogen atom
2004
Our simple theory for excitation of Rydberg atoms by two short, weak half-cycle pulses confirms the experimental data and results of previous calculations. We show that the stronger the field, the faster are the oscillations of the population .
AC Stark shift of the ground state of atomic hydrogen
2004
An analytical expression for the second-order AC Stark shift of the ground state of atomic hydrogen is derived, which is convergent for negative as well as for positive energies of intermediate states except for the resonances. To clarify the applicability of the second-order perturbation theory, we compared results with those which are obtained by us and other authors using nonperturbative methods. It appears that values obtained for the AC Stark shift using our simple formula agree on average with Floquet-method calculations up to the field strength F=0.12 (a.u.), which corresponds to I=1015 W/cm2.
The role of auxiliary states in state discrimination with linear optical evices
2001
The role of auxiliary photons in the problem of identifying a state secretly chosen from a given set of L-photon states is analyzed. It is shown that auxiliary photons do not increase the ability to discriminate such states by means of a global measurement using only optical linear elements, conditional transformation and auxiliary photons.