Search results for "quantum phase transition"

showing 10 items of 100 documents

Heat Capacity and Entanglement Measure in a simple two-qubit model

2011

A simple two-qubit model showing Quantum Phase Transitions as a consequence of ground state level crossings is studied in detail. Using the Concurrence of the system as an entanglement measure and heat capacity as a marker of thermodynamical properties, an analytical expression giving the latter in terms of the former is obtained. A protocol allowing an experimental measure of entanglement is then presented and compared with a related proposal recently reported by Wie\'sniak, Vedral and Brukner

PhysicsQuantum discordQuantum PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciFOS: Physical sciencesQuantum entanglementquantum phase transitions thermal entanglement heat capacitySquashed entanglementMeasure (mathematics)Atomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaQuantum mechanicsQubitQuantum metrologyW stateAmplitude damping channelQuantum Physics (quant-ph)Engineering (miscellaneous)
researchProduct

Quantum control of ground-state rotational coherence in a linear molecule

2000

We present an experimental and theoretical investigation of the quantum control of ground-state rotational coherence in a linear molecule. A sequence of two temporally separated laser pulses creates a rotational superposition state in ${\mathrm{CO}}_{2}$ whose evolution is monitored through a polarization technique. We study the influence of the phase difference between the two pulses. We show that the overlapping of the two wave packets, produced by each pulse, gives rise to quantum interference that affects the orientational anisotropy of the sample. Because of the large number of coherently excited levels, the interference produces well-separated temporal structures, whose magnitude can …

PhysicsQuantum opticsQuantum phase transitionWAVE-PACKETSTRANSITIONSAtomic and Molecular Physics and OpticsPULSESTIME-RESOLVED DYNAMICSQuantum error correctionExcited stateQuantum mechanicsPrincipal quantum numberINDUCED CONTINUUM STRUCTURECoherent statesIONIZATIONAtomic physicsLASER CONTROLGround stateCoherence (physics)
researchProduct

Irreversible work versus fidelity susceptibility for infinitesimal quenches

2016

We compare the irreversible work produced in an infinitesimal sudden quench of a quantum system at zero temperature with its ground state fidelity susceptibility, giving an explicit relation between the two quantities. We find that the former is proportional to the latter but for an extra term appearing in the irreversible work which includes also contributions from the excited states. We calculate explicitly the two quantities in the case of the quantum Ising chain, showing that at criticality they exhibit different scaling behaviors. The irreversible work, rescaled by square of the quench’s amplitude, exhibits a divergence slower than that of the fidelity susceptibility. As a consequence…

PhysicsQuantum phase transition---Quantum PhysicsWork (thermodynamics)Statistical Mechanics (cond-mat.stat-mech)FOS: Physical sciencesStatistical and Nonlinear PhysicsCondensed Matter Physics01 natural sciences010305 fluids & plasmasExcited state0103 physical sciencesQuantum systemStatistical physicsQuantum informationQuantum Physics (quant-ph)010306 general physicsGround stateScalingQuantumCondensed Matter - Statistical MechanicsInternational Journal of Modern Physics B
researchProduct

Lifetime Measurements of Excited States in Pt172 and the Variation of Quadrupole Transition Strength with Angular Momentum

2018

Lifetimes of the first excited 2(+) and 4(+) states in the extremely neutron -deficient nuclide Pt-172 have been measured for the first time using the recoil-distance Doppler shift and recoil-decay tagging techniques. An unusually low value of the ratio B(E2: 4(1)(+) -> 2(1)(+)/B(E2: 2(1)(+) -> 0(gs)(+)) = 0.55(19) was found, similar to a handful of other such anomalous cases observed in the entire Segre chart. The observation adds to a cluster of a few extremely neutron -deficient nuclides of the heavy transition metals with neutron numbers N approximate to 90-94 featuring the effect. No theoretical model calculations reported to date have been able to explain the anomalously low B(E2: 4(1…

PhysicsQuantum phase transitionAngular momentum010308 nuclear & particles physicsGeneral Physics and Astronomy01 natural sciencesExcited stateNeutron number0103 physical sciencesQuadrupoleNuclear fusionNeutronInteracting boson modelAtomic physics010306 general physicsPhysical Review Letters
researchProduct

Role of quasiparticles in universal low-temperature properties of

2008

Abstract We demonstrate that the main universal features of the low temperature magnetic field-temperature experimental phase diagram of CeCoIn 5 and other heavy-fermion metals can be well explained within the concept of quasiparticles and fermion condensation quantum phase transition. We analyze dynamic conductance recently obtained in measurements on CeCoIn 5 and show that the particle–hole symmetry is violated in this metal making dynamic conductance asymmetric as a function of applied voltage V .

PhysicsQuantum phase transitionCondensed matter physicsCondensationQuasiparticleConductanceFermionFunction (mathematics)Electrical and Electronic EngineeringCondensed Matter PhysicsSymmetry (physics)Electronic Optical and Magnetic MaterialsPhase diagramPhysica B: Condensed Matter
researchProduct

Universal low-temperature behavior of the CePd_{1-x}Rh_x ferromagnet

2007

The heavy-fermion metal CePd_{1-x}Rh_x evolves from ferromagnetism at x=0 to a non-magnetic state at some critical concentration x_c. Utilizing the quasiparticle picture and the concept of fermion condensation quantum phase transition (FCQPT), we address the question about non-Fermi liquid (NFL) behavior of ferromagnet CePd_{1-x}Rh_x and show that it coincides with that of both antiferromagnet YbRh_2(Si_{0.95}Ge_{0.05})_2 and paramagnet CeRu_2Si_2 and CeNi_2Ge_2. We conclude that the NFL behavior being independent of the peculiarities of specific alloy, is universal, while numerous quantum critical points assumed to be responsible for the NFL behavior of different HF metals can be well redu…

PhysicsQuantum phase transitionCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)CondensationGeneral Physics and AstronomyFOS: Physical sciencesFermionCondensed Matter - Strongly Correlated ElectronsFerromagnetismQuantum critical pointQuasiparticleAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsQuantum
researchProduct

Liquid-liquid phase coexistence in gold clusters. 2D or not 2D?

2006

The thermodynamics of gold cluster anions (${\mathrm{Au}}_{N}^{\ensuremath{-}}$, $N=11,\dots{},14$) is investigated using quantum molecular dynamics. Our simulations suggest that ${\mathrm{Au}}_{N}^{\ensuremath{-}}$ may exhibit a novel, freestanding planar liquid phase which dynamically coexists with a normal three-dimensional liquid. Upon cooling with experimentally realizable cooling rates, the entropy-favored three-dimensional liquid clusters often supercool and solidify into the ``wrong'' dimensionality. This indicates that experimental validation of theoretically predicted ${\mathrm{Au}}_{N}^{\ensuremath{-}}$ ground states might be more complicated than hitherto expected.

PhysicsQuantum phase transitionGold clusterliquid-liquid transitionGeneral Physics and AstronomyThermodynamicsExperimental validationMolecular physicsQuantum molecular dynamicsPhysics::Fluid DynamicsPlanarClusterPhase (matter)phase transitions in clusterLiquid liquidSupercoolingspectroscopy and geometrical structure of clusters
researchProduct

Phase transition in liquid 4HE by a mean field model

2013

In this work the transition of 4He at the lambda line in presence of a Cattaneo- Maxwell heat flux is studied. A hydrodynamical model is formulated, which chooses as fundamental fields the velocity, the temperature, the heat flux and a phase field function f, for which a time dependent Ginzburg-Landau equation is proposed. Using this model we are able to describe the phase transition and to obtain the pressure-temperature phase diagram which represents the transition, the thermodynamic restrictions and a maximum theorem for the phase field.

PhysicsQuantum phase transitionLiquid heliumPhase transitionField (physics)ThermodynamicsCondensed Matter PhysicsKosterlitz–Thouless transitionMean field theoryHeat fluxMean phase-field modelPhase (matter)Quantum critical pointGeneral Materials ScienceSettore MAT/07 - Fisica MatematicaPhase transition
researchProduct

Time-resolved observation of coherent multi-body interactions in quantum phase revivals

2010

Interactions between microscopic particles are usually described as two-body interactions, although it has been shown that higher order multi-body interactions could give rise to novel quantum phases with intriguing properties. This paper demonstrates effective six-body interactions in a system of ultracold bosonic atoms in a three-dimensional optical lattice. The coherent multi-particle interactions observed here open a new window for simulations of effective field theories and may help to enable the realization of novel topologically ordered many-body quantum phases. Interactions between microscopic particles are usually described as two-body interactions, although it has been shown that …

PhysicsQuantum phase transitionOpen quantum systemMultidisciplinaryQuantum dynamicsQuantum mechanicsPrincipal quantum numberCavity quantum electrodynamicsQuantum simulatorQuantum phasesQuantum numberNature
researchProduct

Experimental Evidence for a Structural-Dynamical Transition in Trajectory Space.

2016

Among the key insights into the glass transition has been the identification of a non-equilibrium phase transition in trajectory space which reveals phase coexistence between the normal supercooled liquid (active phase) and a glassy state (inactive phase). Here we present evidence that such a transition occurs in experiment. In colloidal hard spheres we find a non-Gaussian distribution of trajectories leaning towards those rich in locally favoured structures (LFS), associated with the emergence of slow dynamics. This we interpret as evidence for an non-equilibrium transition to an inactive LFS-rich phase. Reweighting trajectories reveals a first-order phase transition in trajectory space be…

PhysicsQuantum phase transitionPhase transitionFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyHard spheresCondensed Matter - Soft Condensed Matter021001 nanoscience & nanotechnologySpace (mathematics)01 natural sciencesCondensed Matter::Soft Condensed MatterClassical mechanicsPhase (matter)0103 physical sciencesTrajectorySoft Condensed Matter (cond-mat.soft)Statistical physics010306 general physics0210 nano-technologySupercoolingGlass transitionPhysical review letters
researchProduct