Search results for "quantum"

showing 10 items of 9714 documents

The hydrolysis of 6-phosphogluconolactone in the second step of pentose phosphate pathway occurs via a two-water mechanism.

2018

Hydrolysis reaction marks the basis of life yet the mechanism of this crucial biochemical reaction is not completely understood. We recently reported the mechanisms of hydrolysis of nucleoside triphosphate and phosphate monoester. These two reactions hydrolyze P-O-P and P-O-C linkages, respectively. Here, we present the mechanism of hydrolysis of δ-6-phosphogluconolactone, which is an important precursor in the second step of the pentose phosphate pathway. Its hydrolysis requires the cleavage of C-O-C linkage and its mechanism is hitherto unknown. We report three mechanisms of hydrolysis of δ-6-phosphogluconolactone based on density functional computations. In the energetically most favorab…

0301 basic medicineModels MolecularStereochemistryBiophysicsPentose phosphate pathway010402 general chemistryCleavage (embryo)01 natural sciencesBiochemistryGluconatesPentose Phosphate Pathway03 medical and health scienceschemistry.chemical_compoundHydrolysis6-Phosphogluconolactonechemistry.chemical_classificationBinding SitesHydrolysisOrganic ChemistryWaterPhosphate0104 chemical sciencesEcoRV030104 developmental biologyEnzymechemistryNucleoside triphosphateQuantum TheoryThermodynamicsBiophysical chemistry
researchProduct

Wavelength selection of rippling patterns in myxobacteria

2016

Rippling patterns of myxobacteria appear in starving colonies before they aggregate to form fruiting bodies. These periodic traveling cell density waves arise from the coordination of individual cell reversals, resulting from an internal clock regulating them, and from contact signaling during bacterial collisions. Here we revisit a mathematical model of rippling in myxobacteria due to Igoshin et al.\ [Proc. Natl. Acad. Sci. USA {\bf 98}, 14913 (2001) and Phys. Rev. E {\bf 70}, 041911 (2004)]. Bacteria in this model are phase oscillators with an extra internal phase through which they are coupled to a mean-field of oppositely moving bacteria. Previously, patterns for this model were obtaine…

0301 basic medicinePeriodicityPhase transitionPhase (waves)FOS: Physical sciencesModels BiologicalMotion03 medical and health sciencesQuantum mechanicsWavenumberComputer SimulationMyxococcalesPhysics - Biological PhysicsCondensed Matter - Statistical MechanicsPhysicsStatistical Mechanics (cond-mat.stat-mech)Kuramoto modelNonlinear systemWavelength030104 developmental biologyClassical mechanicsNonlinear DynamicsMean field theoryBiological Physics (physics.bio-ph)RipplingLinear Models
researchProduct

Quantum field inspired model of decision making: Asymptotic stabilization of belief state via interaction with surrounding mental environment

2018

This paper is devoted to justification of quantum-like models of the process of decision making based on the theory of open quantum systems, i.e. decision making is considered as decoherence. This process is modeled as interaction of a decision maker, Alice, with a mental (information) environment ${\cal R}$ surrounding her. Such an interaction generates "dissipation of uncertainty" from Alice's belief-state $\rho(t)$ into ${\cal R}$ and asymptotic stabilization of $\rho(t)$ to a steady belief-state. The latter is treated as the decision state. Mathematically the problem under study is about finding constraints on ${\cal R}$ guaranteeing such stabilization. We found a partial solution of th…

0301 basic medicinePersuasionClass (set theory)Psychology (all)Quantum decoherenceDissipation of uncertaintyProcess (engineering)Computer sciencemedia_common.quotation_subjectBF050105 experimental psychology03 medical and health sciences0501 psychology and cognitive sciencesQuantum field theoryQAQuantumGeneral Psychologymedia_commonQuantum-like modelVoters’ behaviorApplied Mathematics05 social sciencesState (functional analysis)16. Peace & justiceMental environmentMental (information) environment030104 developmental biologyQuantitative Biology - Neurons and CognitionOpen quantum systemFOS: Biological sciencesConsumers’ persuasionNeurons and Cognition (q-bio.NC)Decision makingMathematical economics
researchProduct

Linoleic acid: Is this the key that unlocks the quantum brain? Insights linking broken symmetries in molecular biology, mood disorders and personalis…

2017

Abstract In this paper we present a mechanistic model that integrates subneuronal structures, namely ion channels, membrane fatty acids, lipid rafts, G proteins and the cytoskeleton in a dynamic system that is finely tuned in a healthy brain. We also argue that subtle changes in the composition of the membrane’s fatty acids may lead to down-stream effects causing dysregulation of the membrane, cytoskeleton and their interface. Such exquisite sensitivity to minor changes is known to occur in physical systems undergoing phase transitions, the simplest and most studied of them is the so-called Ising model, which exhibits a phase transition at a finite temperature between an ordered and disorde…

0301 basic medicinePhase transitionLinoleic acidMood DisorderModels NeurologicalPhysical systemAntidepressantContext (language use)MicrotubuleReviewlcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineAntidepressants; Cytoskeleton; Depression; Ion channels; Ising model; Linoleic acid; Lipid raft; Microtubule; Mood disorders; Quantum states; Linoleic Acid; Mood Disorders; Brain; Models Neurological; Neuroscience (all); Cellular and Molecular NeuroscienceIsing modelCytoskeletonlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryLipid raftQuantumIon channelCytoskeletonNeuroscience (all)ChemistryDepressionGeneral Neurosciencelcsh:QP351-495BrainQuantum statesMood disorders Linoleic acid Ion channels Cytoskeleton Microtubule Lipid raft Depression Antidepressants Ising model Quantum statesAntidepressantsQuantum stateLipid raftlcsh:Neurophysiology and neuropsychology030104 developmental biologyIon channelsMood disordersIsing modelIon channelNeuroscience030217 neurology & neurosurgery
researchProduct

Nanoscale strain-engineering and optics of quantum emitters in a two-dimensional semiconductor

2017

We present deterministic fabrication of a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. Resonant laser spectroscopy of these emitters reveals localized exciton states that exhibit stable, bright and high-purity single photon emission.

0301 basic medicineSemiconductor luminescence equationsMaterials scienceFabricationbusiness.industryExcitonPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnology03 medical and health sciences030104 developmental biologyStrain engineeringSemiconductorPhysics::Accelerator PhysicsOptoelectronics0210 nano-technologySpectroscopybusinessQuantumElectron-beam lithographyConference on Lasers and Electro-Optics
researchProduct

Uhlmann number in translational invariant systems

2019

We define the Uhlmann number as an extension of the Chern number, and we use this quantity to describe the topology of 2D translational invariant Fermionic systems at finite temperature. We consider two paradigmatic systems and we study the changes in their topology through the Uhlmann number. Through the linear response theory we linked two geometrical quantities of the system, the mean Uhlmann curvature and the Uhlmann number, to directly measurable physical quantities, i.e. the dynamical susceptibility and to the dynamical conductivity, respectively.

0301 basic medicineSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciMathematics::Analysis of PDEsFOS: Physical scienceslcsh:MedicineCurvatureArticleCondensed Matter - Strongly Correlated Electrons03 medical and health sciences0302 clinical medicineTopological insulatorsInvariant (mathematics)lcsh:ScienceCondensed Matter - Statistical MechanicsMathematicsMathematical physicsPhysical quantityQuantum PhysicsMultidisciplinaryChern classStatistical Mechanics (cond-mat.stat-mech)Strongly Correlated Electrons (cond-mat.str-el)lcsh:RUhlmann number Chern number 2D topological Fermionic systems finite temperature dynamical susceptibility dynamical conductivity030104 developmental biologylcsh:QQuantum Physics (quant-ph)Theoretical physicsLinear response theory030217 neurology & neurosurgeryScientific Reports
researchProduct

Biomolecular computers with multiple restriction enzymes

2017

Abstract The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann “bottleneck”. Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro’s group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton t…

0301 basic medicineTheoretical computer scienceDNA computerlcsh:QH426-4700102 computer and information sciencesBiology01 natural scienceslaw.inventionrestriction enzymesGenomics and Bioinformatics03 medical and health sciencessymbols.namesakeSoftwareDNA computinglawGeneticsNondeterministic finite automatonMolecular BiologyQuantum computerFinite-state machinebusiness.industryConstruct (python library)bioinformaticsDNARestriction enzymelcsh:Genetics030104 developmental biology010201 computation theory & mathematicssymbolsbusinessVon Neumann architectureGenetics and Molecular Biology
researchProduct

Phase separations induced by a trapping potential in one-dimensional fermionic systems as a source of core-shell structures

2018

Ultracold fermionic gases in optical lattices give a great opportunity for creating different types of novel states. One of them is phase separation induced by a trapping potential between different types of superfluid phases. The core-shell structures, occurring in systems with a trapping potential, are a good example of such separations. The types and the sequences of phases which emerge in such structures can depend on spin-imbalance, shape of the trap and on-site interaction strength. In this work, we investigate the properties of such structures within an attractive Fermi gas loaded in the optical lattice, in the presence of the trapping potential and their relations to the phase diagr…

0301 basic medicineWork (thermodynamics)lcsh:MedicineFOS: Physical sciencesTrappingMolecular physicsArticleSuperconducting properties and materialsTrap (computing)Superfluidity03 medical and health sciences0302 clinical medicinePhase (matter)lcsh:ScienceUltracold gasesPhase diagramPhysicsCondensed Matter::Quantum GasesOptical latticeMultidisciplinarylcsh:R030104 developmental biologyQuantum Gases (cond-mat.quant-gas)lcsh:QCondensed Matter - Quantum GasesFermi gas030217 neurology & neurosurgery
researchProduct

Mechanistic study of the biosynthesis of R-phenylcarbinol by acetohydroxyacid synthase enzyme using hybrid quantum mechanics/molecular mechanics simu…

2021

Abstract The biosynthesis of R-phenylacetylcarbinol (R-PAC) by the acetohydroxy acid synthase, (AHAS) is addressed by molecular dynamics simulations (MD), hybrid quantum mechanics/molecular mechanics (QM/MM), and QM/MM free energy calculations. The results show the reaction starts with the nucleophilic attack of the C2α atom of the HEThDP intermediate on the Cβ atom of the carbonyl group of benzaldehyde substrate via the formation of a transition state (TS1) with the HEThDP intermediate under 4′-aminopyrimidium (APH+) form. The calculated activation free energy for this step is 17.4 kcal mol−1 at 27 °C. From this point, the reaction continues with the abstraction of Hβ atom of the HEThDP in…

0301 basic medicinechemistry.chemical_classification030102 biochemistry & molecular biologyBiophysicsSubstrate (chemistry)Molecular Dynamics SimulationBiochemistryMolecular mechanicsBenzaldehydeAcetolactate Synthase03 medical and health scienceschemistry.chemical_compoundMolecular dynamics030104 developmental biologychemistryCatalytic cycleNucleophileYlideQuantum mechanicsAtomQuantum TheoryMolecular BiologyBenzyl AlcoholsArchives of Biochemistry and Biophysics
researchProduct

Preparation and molecular structures of N′-(2-heteroarylmethylidene)-3-(3-pyridyl)acrylohydrazides

2018

Abstract The crystal and molecular structures of N′-(2-furylmethylidene)-3-(3-pyridyl)acrylohydrazide and N′-(2-thienylmethylidene)-3-(3-pyridyl)acrylohydrazide are reported, and the influence of the type of the heteroatom on the aromaticity of the aromatic rings is discussed. Both molecules are nearly planar. The geometry of the acrylohydrazide arrangement is comparable to that of homologous compounds. Density functional theory (DFT) calculations were performed in order to analyze the changes in the geometry of the studied compounds in the crystalline state and for the isolated molecule. The most significant changes were observed in the values of the N–N and C–N bond lengths. The harmonic …

0301 basic medicinecrystal structure010405 organic chemistryChemistryacroylhydrazidesaromaticityGeneral ChemistryX-ray structure determination01 natural sciences0104 chemical sciences03 medical and health sciences030104 developmental biologyPolymer chemistryquantum chemical calculationsdensity functional theoryheteroaryl substituentsZeitschrift für Naturforschung B
researchProduct