Search results for "quasi-base"
showing 3 items of 3 documents
Generalized Riesz systems and quasi bases in Hilbert space
2019
The purpose of this article is twofold. First of all, the notion of $(D, E)$-quasi basis is introduced for a pair $(D, E)$ of dense subspaces of Hilbert spaces. This consists of two biorthogonal sequences $\{ \varphi_n \}$ and $\{ \psi_n \}$ such that $\sum_{n=0}^\infty \ip{x}{\varphi_n}\ip{\psi_n}{y}=\ip{x}{y}$ for all $x \in D$ and $y \in E$. Secondly, it is shown that if biorthogonal sequences $\{ \varphi_n \}$ and $\{ \psi_n \}$ form a $(D ,E)$-quasi basis, then they are generalized Riesz systems. The latter play an interesting role for the construction of non-self-adjoint Hamiltonians and other physically relevant operators.
Some perturbation results for quasi-bases and other sequences of vectors
2023
We discuss some perturbation results concerning certain pairs of sequences of vectors in a Hilbert space $\Hil$ and producing new sequences which share, with the original ones, { reconstruction formulas on a dense subspace of $\Hil$ or on the whole space}. We also propose some preliminary results on the same issue, but in a distributional settings.
Hamiltonians defined by biorthogonal sets
2017
In some recent papers, the studies on biorthogonal Riesz bases has found a renewed motivation because of their connection with pseudo-hermitian Quantum Mechanics, which deals with physical systems described by Hamiltonians which are not self-adjoint but still may have real point spectra. Also, their eigenvectors may form Riesz, not necessarily orthonormal, bases for the Hilbert space in which the model is defined. Those Riesz bases allow a decomposition of the Hamiltonian, as already discussed is some previous papers. However, in many physical models, one has to deal not with o.n. bases or with Riesz bases, but just with biorthogonal sets. Here, we consider the more general concept of $\mat…