Search results for "quasi-base"

showing 3 items of 3 documents

Generalized Riesz systems and quasi bases in Hilbert space

2019

The purpose of this article is twofold. First of all, the notion of $(D, E)$-quasi basis is introduced for a pair $(D, E)$ of dense subspaces of Hilbert spaces. This consists of two biorthogonal sequences $\{ \varphi_n \}$ and $\{ \psi_n \}$ such that $\sum_{n=0}^\infty \ip{x}{\varphi_n}\ip{\psi_n}{y}=\ip{x}{y}$ for all $x \in D$ and $y \in E$. Secondly, it is shown that if biorthogonal sequences $\{ \varphi_n \}$ and $\{ \psi_n \}$ form a $(D ,E)$-quasi basis, then they are generalized Riesz systems. The latter play an interesting role for the construction of non-self-adjoint Hamiltonians and other physically relevant operators.

General Mathematicsquasi-basesMathematics::Number TheoryFOS: Physical sciences01 natural sciencesCombinatoricssymbols.namesakeRiesz systemSettore MAT/05 - Analisi MatematicaFOS: Mathematics0101 mathematicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsMathematics::Functional AnalysisHigh Energy Physics::Phenomenology010102 general mathematicsHilbert spaceBasis (universal algebra)Mathematical Physics (math-ph)Linear subspaceFunctional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisBiorthogonal systemsymbols
researchProduct

Some perturbation results for quasi-bases and other sequences of vectors

2023

We discuss some perturbation results concerning certain pairs of sequences of vectors in a Hilbert space $\Hil$ and producing new sequences which share, with the original ones, { reconstruction formulas on a dense subspace of $\Hil$ or on the whole space}. We also propose some preliminary results on the same issue, but in a distributional settings.

Mathematics - Functional Analysisperturbationsquasi-baseSettore MAT/05 - Analisi MatematicaFOS: MathematicsFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Settore MAT/07 - Fisica MatematicaMathematical PhysicsFunctional Analysis (math.FA)
researchProduct

Hamiltonians defined by biorthogonal sets

2017

In some recent papers, the studies on biorthogonal Riesz bases has found a renewed motivation because of their connection with pseudo-hermitian Quantum Mechanics, which deals with physical systems described by Hamiltonians which are not self-adjoint but still may have real point spectra. Also, their eigenvectors may form Riesz, not necessarily orthonormal, bases for the Hilbert space in which the model is defined. Those Riesz bases allow a decomposition of the Hamiltonian, as already discussed is some previous papers. However, in many physical models, one has to deal not with o.n. bases or with Riesz bases, but just with biorthogonal sets. Here, we consider the more general concept of $\mat…

Statistics and ProbabilityPure mathematicsReal pointbiorthogonal setquasi-basesMathematics::Classical Analysis and ODEsPhysical systemFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencessymbols.namesake0103 physical sciencesOrthonormal basis0101 mathematics010306 general physicsMathematical PhysicsEigenvalues and eigenvectorsMathematicsQuantum PhysicsMathematics::Functional Analysis010102 general mathematicsHilbert spaceStatistical and Nonlinear PhysicsMathematical Physics (math-ph)pseudo-Hermitian HamiltonianModeling and SimulationBiorthogonal systemsymbolsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)
researchProduct