Search results for "quasiconformal"
showing 10 items of 45 documents
Analytic Properties of Quasiconformal Mappings Between Metric Spaces
2012
We survey recent developments in the theory of quasiconformal mappings between metric spaces. We examine the various weak definitions of quasiconformality, and give conditions under which they are all equal and imply the strong classical properties of quasiconformal mappings in Euclidean spaces. We also discuss function spaces preserved by quasiconformal mappings.
Singularities in L^p-quasidisks
2021
We study planar domains with exemplary boundary singularities of the form of cusps. A natural question is how much elastic energy is needed to flatten these cusps; that is, to remove singularities. We give, in a connection of quasidisks, a sharp integrability condition for the distortion function to answer this question. peerReviewed
Global Lp -integrability of the derivative of a quasiconformal mapping
1988
Let f be a quasiconformal mapping of an open bounded set U in Rn into Rn . Then f′ belongs to Lp(U) for some p > n provided that f satisfies (a) U is a uniform domain and fU is a John domain or (b) f is quasisymmetric and U satisfies a metric plumpness condition.
Hölder continuity of Sobolev functions and quasiconformal mappings
1993
Quasiconformal distortion on arcs
1994
Distortion of quasiconformal maps in terms of the quasihyperbolic metric
2013
Abstract We extend a theorem of Gehring and Osgood from 1979–relating to the distortion of the quasihyperbolic metric by a quasiconformal mapping between Euclidean domains–to the setting of metric measure spaces of Q -bounded geometry. When the underlying target space is bounded, we require that the boundary of the image has at least two points. We show that even in the manifold setting, this additional assumption is necessary.
Geometric Properties of Planar BV -Extension Domains
2009
We investigate geometric properties of those planar domains that are extension for functions with bounded variation.We start from a characterization of such domains given by Burago–Maz'ya and prove that a bounded, simply connected domain is a BV -extension domain if and only if its com- plement is quasiconvex. We further prove that the extension property is a bi-Lipschitz invariant and give applications to Sobolev extension domains.
Bonnesenʼs inequality for John domains in Rn
2012
Abstract We prove sharp quantitative isoperimetric inequalities for John domains in R n . We show that the Bonnesen-style inequalities hold true in R n under the John domain assumption which rules out cusps. Our main tool is a proof of the isoperimetric inequality for symmetric domains which gives an explicit estimate for the isoperimetric deficit. We use the sharp quantitative inequalities proved in Fusco et al. (2008) [7] and Fuglede (1989) [4] to reduce our problem to symmetric domains.
Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings
2011
Abstract In this paper, the authors characterize, in terms of pointwise inequalities, the classical Besov spaces B ˙ p , q s and Triebel–Lizorkin spaces F ˙ p , q s for all s ∈ ( 0 , 1 ) and p , q ∈ ( n / ( n + s ) , ∞ ] , both in R n and in the metric measure spaces enjoying the doubling and reverse doubling properties. Applying this characterization, the authors prove that quasiconformal mappings preserve F ˙ n / s , q s on R n for all s ∈ ( 0 , 1 ) and q ∈ ( n / ( n + s ) , ∞ ] . A metric measure space version of the above morphism property is also established.