Search results for "quasiconformal"

showing 10 items of 45 documents

Analytic Properties of Quasiconformal Mappings Between Metric Spaces

2012

We survey recent developments in the theory of quasiconformal mappings between metric spaces. We examine the various weak definitions of quasiconformality, and give conditions under which they are all equal and imply the strong classical properties of quasiconformal mappings in Euclidean spaces. We also discuss function spaces preserved by quasiconformal mappings.

Pure mathematicsQuasiconformal mappingMathematics::Dynamical SystemsExtremal lengthMathematics::Complex VariablesInjective metric spaceProduct metricTopologyTriebel–Lizorkin spaceConvex metric spaceMetric spaceComputer Science::GraphicsMetric mapMathematics
researchProduct

Singularities in L^p-quasidisks

2021

We study planar domains with exemplary boundary singularities of the form of cusps. A natural question is how much elastic energy is needed to flatten these cusps; that is, to remove singularities. We give, in a connection of quasidisks, a sharp integrability condition for the distortion function to answer this question. peerReviewed

PhysicsCusp (singularity)Distortion functionPure mathematicsquasidiskmappings of integrable distortionElastic energyBoundary (topology)Of the formArticlesCuspquasiconformalConnection (mathematics)funktioteoriaPlanarcuspGravitational singularityAnnales Fennici Mathematici
researchProduct

Global Lp -integrability of the derivative of a quasiconformal mapping

1988

Let f be a quasiconformal mapping of an open bounded set U in Rn into Rn . Then f′ belongs to Lp(U) for some p > n provided that f satisfies (a) U is a uniform domain and fU is a John domain or (b) f is quasisymmetric and U satisfies a metric plumpness condition.

010101 applied mathematicsCombinatoricsQuasiconformal mappingBounded set010102 general mathematicsMathematical analysisMetric (mathematics)General MedicineDerivative0101 mathematics01 natural sciencesDomain (mathematical analysis)MathematicsComplex Variables, Theory and Application: An International Journal
researchProduct

Hölder continuity of Sobolev functions and quasiconformal mappings

1993

Sobolev spaceQuasiconformal mappingPure mathematicsGeneral MathematicsHölder conditionBeltrami equationMathematicsSobolev inequalityMathematische Zeitschrift
researchProduct

Quasiconformal distortion on arcs

1994

Distortion (mathematics)Quasiconformal mappingExtremal lengthPartial differential equationGeneral MathematicsMathematical analysisTopologyAnalysisMathematicsJournal d'Analyse Mathématique
researchProduct

Distortion of quasiconformal maps in terms of the quasihyperbolic metric

2013

Abstract We extend a theorem of Gehring and Osgood from 1979–relating to the distortion of the quasihyperbolic metric by a quasiconformal mapping between Euclidean domains–to the setting of metric measure spaces of Q -bounded geometry. When the underlying target space is bounded, we require that the boundary of the image has at least two points. We show that even in the manifold setting, this additional assumption is necessary.

Quasiconformal mappingPure mathematicsMathematics::Complex VariablesApplied MathematicsInjective metric space010102 general mathematicsMathematical analysista111Equivalence of metrics01 natural sciencesConvex metric spaceIntrinsic metric010101 applied mathematicsDistortion (mathematics)Metric space0101 mathematicsAnalysisFisher information metricMathematicsJournal of mathematical analysis and applications
researchProduct

Geometric Properties of Planar BV -Extension Domains

2009

We investigate geometric properties of those planar domains that are extension for functions with bounded variation.We start from a characterization of such domains given by Burago–Maz'ya and prove that a bounded, simply connected domain is a BV -extension domain if and only if its com- plement is quasiconvex. We further prove that the extension property is a bi-Lipschitz invariant and give applications to Sobolev extension domains.

Discrete mathematicsQuasiconformal mappingMathematics::Analysis of PDEsGeometric propertySobolev spaceQuasiconvex functionExtension domains; Sobolev spaces; Functions with bounded variationPlanarSobolev spacesFunctions with bounded variationBounded functionSimply connected spaceInvariant (mathematics)Extension domainsMathematics
researchProduct

Bonnesenʼs inequality for John domains in Rn

2012

Abstract We prove sharp quantitative isoperimetric inequalities for John domains in R n . We show that the Bonnesen-style inequalities hold true in R n under the John domain assumption which rules out cusps. Our main tool is a proof of the isoperimetric inequality for symmetric domains which gives an explicit estimate for the isoperimetric deficit. We use the sharp quantitative inequalities proved in Fusco et al. (2008) [7] and Fuglede (1989) [4] to reduce our problem to symmetric domains.

Pure mathematicsJohn domainInequalitymedia_common.quotation_subjectMathematical analysisIsoperimetric dimensionQuasiconformal mapDomain (mathematical analysis)Quantitative isoperimetric inequalityMathematics::Metric GeometryIsoperimetric inequalityAnalysismedia_commonMathematicsJournal of Functional Analysis
researchProduct

Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings

2011

Abstract In this paper, the authors characterize, in terms of pointwise inequalities, the classical Besov spaces B ˙ p , q s and Triebel–Lizorkin spaces F ˙ p , q s for all s ∈ ( 0 , 1 ) and p , q ∈ ( n / ( n + s ) , ∞ ] , both in R n and in the metric measure spaces enjoying the doubling and reverse doubling properties. Applying this characterization, the authors prove that quasiconformal mappings preserve F ˙ n / s , q s on R n for all s ∈ ( 0 , 1 ) and q ∈ ( n / ( n + s ) , ∞ ] . A metric measure space version of the above morphism property is also established.

Mathematics(all)Quasiconformal mappingPure mathematicsGeneral MathematicsGrand Besov spaceMetric measure spaceTriebel–Lizorkin spaceCharacterization (mathematics)Space (mathematics)Triebel–Lizorkin space01 natural sciencesMeasure (mathematics)Quasisymmetric mappingMorphism0101 mathematicsBesov spaceHajłasz–Besov spaceMathematicsPointwiseta111010102 general mathematicsGrand Triebel–Lizorkin spaceQuasiconformal mappingHajłasz–Triebel–Lizorkin space010101 applied mathematicsBesov spaceFractional Hajłasz gradientAdvances in Mathematics
researchProduct

On a fundamental variational lemma for extremal quasiconformal mappings

1986

Discrete mathematicsQuasiconformal mappingLemma (mathematics)Extremal lengthGeneral MathematicsMathematicsCommentarii Mathematici Helvetici
researchProduct