6533b856fe1ef96bd12b1ec2

RESEARCH PRODUCT

Reciprocal lower bound on modulus of curve families in metric surfaces

Matthew RomneyKai Rajala

subject

General Mathematics010102 general mathematicsquasiconformal mappingModulusMetric Geometry (math.MG)uniformizationconformal modulusCoarea inequalitymetriset avaruudet01 natural sciencesUpper and lower boundsfunktioteoriaCombinatoricsMathematics - Metric Geometry30L100103 physical sciencesMetric (mathematics)FOS: Mathematics010307 mathematical physics0101 mathematicsReciprocalMathematics

description

We prove that any metric space $X$ homeomorphic to $\mathbb{R}^2$ with locally finite Hausdorff 2-measure satisfies a reciprocal lower bound on modulus of curve families associated to a quadrilateral. More precisely, let $Q \subset X$ be a topological quadrilateral with boundary edges (in cyclic order) denoted by $\zeta_1, \zeta_2, \zeta_3, \zeta_4$ and let $\Gamma(\zeta_i, \zeta_j; Q)$ denote the family of curves in $Q$ connecting $\zeta_i$ and $\zeta_j$; then $\text{mod} \Gamma(\zeta_1, \zeta_3; Q) \text{mod} \Gamma(\zeta_2, \zeta_4; Q) \geq 1/\kappa$ for $\kappa = 2000^2\cdot (4/\pi)^2$. This answers a question concerning minimal hypotheses under which a metric space admits a quasiconformal parametrization by a domain in $\mathbb{R}^2$.

10.5186/aasfm.2019.4442http://dx.doi.org/10.5186/aasfm.2019.4442