Search results for "rate of convergence"

showing 10 items of 69 documents

Some approximation properties of a Durrmeyer variant ofq-Bernstein-Schurer operators

2016

010101 applied mathematicsRate of convergenceGeneral Mathematics010102 general mathematicsMathematical analysisGeneral EngineeringApplied mathematics0101 mathematicsStatistical convergence01 natural sciencesMathematicsMathematical Methods in the Applied Sciences
researchProduct

Convergence of direct recursive algorithm for identification of Preisach hysteresis model with stochastic input

2015

We consider a recursive iterative algorithm for identification of parameters of the Preisach model, one of the most commonly used models of hysteretic input-output relationships. The classical identification algorithm due to Mayergoyz defines explicitly a series of test inputs that allow one to find parameters of the Preisach model with any desired precision provided that (a) such input time series can be implemented and applied; and, (b) the corresponding output data can be accurately measured and recorded. Recursive iterative identification schemes suitable for a number of engineering applications have been recently proposed as an alternative to the classical algorithm. These recursive sc…

0209 industrial biotechnology93E12 47J40 74N30Markov chainIterative methodApplied MathematicsMarkov processFOS: Physical sciences02 engineering and technologyFunction (mathematics)Nonlinear Sciences - Chaotic Dynamics021001 nanoscience & nanotechnologyParameter identification problemsymbols.namesake020901 industrial engineering & automationRate of convergenceControl theoryPiecewisesymbolsApplied mathematicsOnline algorithmChaotic Dynamics (nlin.CD)0210 nano-technologyMathematics
researchProduct

A class of third order iterative Kurchatov–Steffensen (derivative free) methods for solving nonlinear equations

2019

Abstract In this paper we show a strategy to devise third order iterative methods based on classic second order ones such as Steffensen’s and Kurchatov’s. These methods do not require the evaluation of derivatives, as opposed to Newton or other well known third order methods such as Halley or Chebyshev. Some theoretical results on convergence will be stated, and illustrated through examples. These methods are useful when the functions are not regular or the evaluation of their derivatives is costly. Furthermore, special features as stability, laterality (asymmetry) and other properties can be addressed by choosing adequate nodes in the design of the methods.

0209 industrial biotechnologyClass (set theory)Computer scienceIterative methodApplied MathematicsStability (learning theory)020206 networking & telecommunications02 engineering and technologyChebyshev filterComputational MathematicsNonlinear systemThird order020901 industrial engineering & automationRate of convergenceConvergence (routing)0202 electrical engineering electronic engineering information engineeringApplied mathematicsApplied Mathematics and Computation
researchProduct

Better numerical approximation by Durrmeyer type operators

2018

The main object of this paper is to construct new Durrmeyer type operators which have better features than the classical one. Some results concerning the rate of convergence and asymptotic formulas of the new operator are given. Finally, the theoretical results are analyzed by numerical examples.

41A25 41A36Applied Mathematics010102 general mathematicsConstruct (python library)Numerical Analysis (math.NA)Type (model theory)Object (computer science)01 natural sciences010101 applied mathematicsMathematics (miscellaneous)Operator (computer programming)Rate of convergenceNumerical approximationFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematicsMathematics
researchProduct

Coupled conditional backward sampling particle filter

2020

The conditional particle filter (CPF) is a promising algorithm for general hidden Markov model smoothing. Empirical evidence suggests that the variant of CPF with backward sampling (CBPF) performs well even with long time series. Previous theoretical results have not been able to demonstrate the improvement brought by backward sampling, whereas we provide rates showing that CBPF can remain effective with a fixed number of particles independent of the time horizon. Our result is based on analysis of a new coupling of two CBPFs, the coupled conditional backward sampling particle filter (CCBPF). We show that CCBPF has good stability properties in the sense that with fixed number of particles, …

65C05FOS: Computer and information sciencesStatistics and ProbabilityunbiasedMarkovin ketjutTime horizonStatistics - Computation01 natural sciencesStability (probability)backward sampling65C05 (Primary) 60J05 65C35 65C40 (secondary)010104 statistics & probabilityconvergence rateFOS: MathematicsApplied mathematics0101 mathematicscouplingHidden Markov model65C35Computation (stat.CO)Mathematicsstokastiset prosessitBackward samplingSeries (mathematics)Probability (math.PR)Sampling (statistics)conditional particle filterMonte Carlo -menetelmätRate of convergence65C6065C40numeerinen analyysiStatistics Probability and UncertaintyParticle filterMathematics - ProbabilitySmoothing
researchProduct

Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques

2008

Abstract This paper introduces and analyzes new approximation procedures for bivariate functions. These procedures are based on an edge-adapted nonlinear reconstruction technique which is an intrinsically two-dimensional extension of the essentially non-oscillatory and subcell resolution techniques introduced in the one-dimensional setting by Harten and Osher. Edge-adapted reconstructions are tailored to piecewise smooth functions with geometrically smooth edge discontinuities, and are therefore attractive for applications such as image compression and shock computations. The local approximation order is investigated both in L p and in the Hausdorff distance between graphs. In particular, i…

ComputationApplied MathematicsMathematical analysisComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONClassification of discontinuitiesNonlinear systemHausdorff distanceRate of convergenceCurveletPiecewiseApplied mathematicsComputingMethodologies_COMPUTERGRAPHICSImage compressionMathematicsApplied and Computational Harmonic Analysis
researchProduct

Global convergence and rate of convergence of a method of centers

1994

We consider a method of centers for solving constrained optimization problems. We establish its global convergence and that it converges with a linear rate when the starting point of the algorithm is feasible as well as when the starting point is infeasible. We demonstrate the effect of the scaling on the rate of convergence. We extend afterwards, the stability result of [5] to the infeasible case anf finally, we give an application to semi-infinite optimization problems.

Computational MathematicsMathematical optimizationControl and OptimizationOptimization problemRate of convergenceApplied MathematicsConvergence (routing)Linear ratePoint (geometry)Convergence testsScalingCompact convergenceMathematicsComputational Optimization and Applications
researchProduct

The rate of multiplicity of the roots of nonlinear equations and its application to iterative methods

2015

Nonsimple roots of nonlinear equations present some challenges for classic iterative methods, such as instability or slow, if any, convergence. As a consequence, they require a greater computational cost, depending on the knowledge of the order of multiplicity of the roots. In this paper, we introduce dimensionless function, called rate of multiplicity, which estimates the order of multiplicity of the roots, as a dynamic global concept, in order to accelerate iterative processes. This rate works not only with integer but also fractional order of multiplicity and even with poles (negative order of multiplicity).

Computational MathematicsNonlinear systemRate of convergenceIterative methodApplied MathematicsMathematical analysisMultiplicity (mathematics)InstabilityMathematicsDimensionless quantityApplied Mathematics and Computation
researchProduct

On finite element approximation of the gradient for solution of Poisson equation

1981

A nonconforming mixed finite element method is presented for approximation of ?w with Δw=f,w| r =0. Convergence of the order $$\left\| {\nabla w - u_h } \right\|_{0,\Omega } = \mathcal{O}(h^2 )$$ is proved, when linear finite elements are used. Only the standard regularity assumption on triangulations is needed.

Computational MathematicsRate of convergenceApplied MathematicsMathematical analysisOrder (ring theory)Mixed finite element methodNabla symbolSuperconvergencePoisson's equationFinite element methodMathematicsExtended finite element methodNumerische Mathematik
researchProduct

Iterative approximation to a coincidence point of two mappings

2015

In this article two methods for approximating the coincidence point of two mappings are studied and moreover, rates of convergence for both methods are given. These results are illustrated by several examples, in particular we apply such results to study the convergence and their rate of convergence of these methods to the solution of a nonlinear integral equation and of a nonlinear differential equation.

Computational MathematicsRate of convergenceIterative methodApplied MathematicsNormal convergenceConvergence (routing)Mathematical analysisConvergence testsModes of convergenceCoincidence pointCompact convergenceMathematicsApplied Mathematics and Computation
researchProduct