Search results for "recommender system"
showing 10 items of 70 documents
SEMANTIC AND CONTEXTUAL APPROACH FOR THE RECOMMENDATION OF LEARNING MODULES IN MOBILITY
2012
International audience; Many researchers argue that mobile learning is just an adaptation of e-learning on mobile technology, but far from a simple extension of e-learning, m-learning raises original issues in technological and pedagogical terms. M-learning is usually based on the consideration of a context rich on information and interactions. The challenge of m-learning is therefore, not simply to transfer on mobile content designed primarily for e-learning. This concept implies that we must rethink the entire process of the learning experience in mobility to maximize its efficiency.
Recommender system for combination of learning elements in mobile environment
2012
5 pages; International audience; The paper presents an ongoing research about the development of a new recommender system dedicated to m-learning. This system is an extension of content based recommender system proposals. It's made of three levels architecture: 1/ a domain model describing the knowledge of teaching, 2/ a user model defining learner's profile and learning's context, 3/ an adaptation model containing rules and metaheuristics, which aims at combining learning modules. Our system takes into account the spatio-temporal context of the learners, the evolution of learner's profile and the dynamic adaptation of modules during the learning process in a mobile environment. The result …
Investigating serendipity in recommender systems based on real user feedback
2018
Over the past several years, research in recommender systems has emphasized the importance of serendipity, but there is still no consensus on the definition of this concept and whether serendipitous items should be recommended is still not a well-addressed question. According to the most common definition, serendipity consists of three components: relevance, novelty and unexpectedness, where each component has multiple variations. In this paper, we looked at eight different definitions of serendipity and asked users how they perceived them in the context of movie recommendations. We surveyed 475 users of the movie recommender system, MovieLens regarding 2146 movies in total and compared tho…
A Hybrid Multigroup Coclustering Recommendation Framework Based on Information Fusion
2015
Collaborative Filtering (CF) is one of the most successful algorithms in recommender systems. However, it suffers from data sparsity and scalability problems. Although many clustering techniques have been incorporated to alleviate these two problems, most of them fail to achieve further significant improvement in recommendation accuracy. First of all, most of them assume each user or item belongs to a single cluster. Since usually users can hold multiple interests and items may belong to multiple categories, it is more reasonable to assume that users and items can join multiple clusters (groups), where each cluster is a subset of like-minded users and items they prefer. Furthermore, most of…
Cross-Domain Recommendations with Overlapping Items
2016
In recent years, there has been an increasing interest in cross-domain recommender systems. However, most existing works focus on the situation when only users or users and items overlap in different domains. In this paper, we investigate whether the source domain can boost the recommendation performance in the target domain when only items overlap. Due to the lack of publicly available datasets, we collect a dataset from two domains related to music, involving both the users’ rating scores and the description of the items. We then conduct experiments using collaborative filtering and content-based filtering approaches for validation purpose. According to our experimental results, the sourc…
A Serendipity-Oriented Greedy Algorithm for Recommendations
2017
Most recommender systems suggest items to a user that are popular among all users and similar to items the user usually consumes. As a result, a user receives recommendations that she/he is already familiar with or would find anyway, leading to low satisfaction. To overcome this problem, a recommender system should suggest novel, relevant and unexpected, i.e. serendipitous items. In this paper, we propose a serendipity-oriented algorithm, which improves serendipity through feature diversification and helps overcome the overspecialization problem. To evaluate our algorithm and compare it with others, we employ a serendipity metric that captures each component of serendipity, unlike the most …
A two-step, user-centered approach to personalized tourist recommendations
2017
Geo-localized, mobile applications can simplify a tourist visit, making the relevant Point of Interests more easily and promptly discernible to users. At the same time, such solutions must avoid creating unfitting or rigid user profiles that impoverish the users' options instead of refining them. Currently, user profiles in recommender systems rely on dimensions whose relevance to the user is more often presumed than empirically defined. To avoid this drawback, we build our recommendation system in a two-step process, where profile parameters are evaluated preliminarily and separately from the recommendations themselves. We describe this two-step evaluation process including an initial surv…
Social Collaborative Viewpoint Regression with Explainable Recommendations
2017
A recommendation is called explainable if it not only predicts a numerical rating for an item, but also generates explanations for users' preferences. Most existing methods for explainable recommendation apply topic models to analyze user reviews to provide descriptions along with the recommendations they produce. So far, such methods have neglected user opinions and influences from social relations as a source of information for recommendations, even though these are known to improve the rating prediction. In this paper, we propose a latent variable model, called social collaborative viewpoint regression (sCVR), for predicting item ratings based on user opinions and social relations. To th…
Listwise Collaborative Filtering
2015
Recently, ranking-oriented collaborative filtering (CF) algorithms have achieved great success in recommender systems. They obtained state-of-the-art performances by estimating a preference ranking of items for each user rather than estimating the absolute ratings on unrated items (as conventional rating-oriented CF algorithms do). In this paper, we propose a new ranking-oriented CF algorithm, called ListCF. Following the memory-based CF framework, ListCF directly predicts a total order of items for each user based on similar users' probability distributions over permutations of the items, and thus differs from previous ranking-oriented memory-based CF algorithms that focus on predicting th…
Recommending Serendipitous Items using Transfer Learning
2018
Most recommender algorithms are designed to suggest relevant items, but suggesting these items does not always result in user satisfaction. Therefore, the efforts in recommender systems recently shifted towards serendipity, but generating serendipitous recommendations is difficult due to the lack of training data. To the best of our knowledge, there are many large datasets containing relevance scores (relevance oriented) and only one publicly available dataset containing a relatively small number of serendipity scores (serendipity oriented). This limits the learning capabilities of serendipity oriented algorithms. Therefore, in the absence of any known deep learning algorithms for recommend…