Search results for "regres"

showing 10 items of 2935 documents

Prevalence and characteristics of antidepressant drug prescriptions in older Italian patients.

2012

ABSTRACTBackground: During last few decades, the proportion of elderly persons prescribed with antidepressants for the treatment of depression and anxiety has increased. The aim of this study was to evaluate prevalence of antidepressant prescription and related factors in elderly in-patients, as well as the consistency between prescription of antidepressants and specific diagnoses requiring these medications.Methods: Thirty-four internal medicine and four geriatric wards in Italy participated in the Registro Politerapie SIMI–REPOSI study during 2008. In all, 1,155 in-patients, 65 years or older, were enrolled. Prevalence of the use of antidepressants was calculated at both admission and dis…

---DrugMalemedicine.medical_specialtyMultivariate analysisSettore MED/09 - Medicina Internaantidepressants; prescription; elderly; hospitalization; dementiamedia_common.quotation_subjectLogistic regressionelderlySex FactorsInternal medicinemedicinePrevalenceantidepressant drugsDementiaHumansMedical prescriptionPractice Patterns Physicians'PsychiatryDepression (differential diagnoses)media_commonAgedprescriptionantidepressantbusiness.industryDepressionAge Factorsmedicine.diseaseSettore MED/45 - Scienze Infermieristiche Generali Cliniche E PediatricheAntidepressive AgentsPsychiatry and Mental healthClinical PsychologyLogistic Models---; elderly; antidepressant drugs; PrevalenceItalyAnxietyAntidepressantDementiaFemaleGeriatrics and Gerontologymedicine.symptombusinessGerontologyhospitalizationInternational psychogeriatrics
researchProduct

Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3

2012

Abstract ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring. This unprecedented data availability leads to an urgent need for developing robust and accurate retrieval methods. Machine learning regression algorithms may be powerful candidates for the estimation of biophysical parameters from satellite reflectance measurements because of their ability to perform adaptive, nonlinear data fitting. By using data from …

010504 meteorology & atmospheric sciencesArtificial neural networkMean squared errorbusiness.industryComputer science0211 other engineering and technologiesSoil ScienceGeology02 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesRegressionSupport vector machineTemporal resolutionGround-penetrating radarCurve fittingArtificial intelligenceComputers in Earth SciencesbusinessImage resolutioncomputer021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRemote Sensing of Environment
researchProduct

Estimating the macroscopic capillary length from Beerkan infiltration experiments and its impact on saturated soil hydraulic conductivity predictions

2020

International audience; The macroscopic capillary length, λc, is a fundamental soil parameter expressing the relative importance of the capillary over gravity forces during water movement in unsaturated soil. In this investigation, we propose a simple field method for estimating λc using only a single-ring infiltration experiment of the Beerkan type and measurements of initial and saturated soil water contents. We assumed that the intercept of the linear regression fitted to the steady-state portion of the experimental infiltration curve could be used as a reliable predictor of λc. This hypothesis was validated by assessing the proposed calculation approach using both analytical and field d…

010504 meteorology & atmospheric sciencesCapillary actionField dataHydraulic conductivity0207 environmental engineeringSoil science02 engineering and technology[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil study01 natural sciencesHydraulic conductivityBeerkan Hydraulic conductivity Infiltration Macroscopic capillary length Ring infiltrometerApproximation errorBeerkanLinear regressionSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestali[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology020701 environmental engineeringRing infiltrometer0105 earth and related environmental sciencesWater Science and TechnologyInfiltration6. Clean waterMacroscopic capillary lengthInfiltration (hydrology)Capillary lengthSoil waterEnvironmental science
researchProduct

Statistical retrieval of atmospheric profiles with deep convolutional neural networks

2019

Abstract Infrared atmospheric sounders, such as IASI, provide an unprecedented source of information for atmosphere monitoring and weather forecasting. Sensors provide rich spectral information that allows retrieval of temperature and moisture profiles. From a statistical point of view, the challenge is immense: on the one hand, “underdetermination” is common place as regression needs to work on high dimensional input and output spaces; on the other hand, redundancy is present in all dimensions (spatial, spectral and temporal). On top of this, several noise sources are encountered in the data. In this paper, we present for the first time the use of convolutional neural networks for the retr…

010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesWeather forecasting02 engineering and technologycomputer.software_genreAtmospheric measurements01 natural sciencesConvolutional neural networkLinear regressionRedundancy (engineering)Information retrievalInfrared measurementsComputers in Earth SciencesEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesArtificial neural networkbusiness.industryDeep learningDimensionality reductionPattern recognitionAtomic and Molecular Physics and OpticsComputer Science Applications13. Climate actionNoise (video)Artificial intelligencebusinesscomputerNeural networksISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Comparison of gap-filling techniques applied to the CCI soil moisture database in Southern Europe

2021

Abstract Soil moisture (SM) is a key variable that plays an important role in land-atmosphere interactions. Monitoring SM is crucial for many applications and can help to determine the impact of climate change. Therefore, it is essential to have continuous and long-term databases for this variable. Satellite missions have contributed to this; however, the continuity of the series is compromised due to the data gaps derived by different factors, including revisit time, presence of seasonal ice or Radio Frequency Interference (RFI) contamination. In this work, the applicability of different gap-filling techniques is evaluated on the ESA Climate Change Initiative (CCI) SM combined product, whi…

010504 meteorology & atmospheric sciencesDatabaseCorrelation coefficient0208 environmental biotechnologySoil ScienceGeology02 engineering and technologycomputer.software_genre01 natural sciencesNormalized Difference Vegetation Index020801 environmental engineeringRandom forestSupport vector machineAutoregressive modelPrincipal component analysisPotential evaporationComputers in Earth Sciencescomputer0105 earth and related environmental sciencesMathematicsInterpolationRemote sensingRemote Sensing of Environment
researchProduct

Contribution of environmental factors to temperature distribution at different resolution levels on the forefield of the Loven Glaciers (Svalbard)

2007

ABSTRACTThe climate and its components (temperature and precipitation) are organised according to different spatial scales that are structured hierarchically. The aim of this paper is to explore the dependence between temperature and deterministic factors at different scales on a 10 km2 study area on the northwestern coast of Svalbard. A GIS was developed which contained three sources of information: temperature, remotely sensed imagery and digital elevation models (DEM), and derived raster data layers. The first layer, temperatures, was acquired at regularly observed temporal intervals from 53 stations. The second layer comprised remotely sensed images (aerial photography and SPOT imagery)…

010504 meteorology & atmospheric sciencesEcology[SHS.GEO] Humanities and Social Sciences/GeographyGeography Planning and Development0207 environmental engineeringElevation02 engineering and technology[SHS.GEO]Humanities and Social Sciences/Geography15. Life on land01 natural sciences[ SHS.GEO ] Humanities and Social Sciences/GeographyRaster dataAerial photography13. Climate actionLinear regressionSpatial ecologyGeneral Earth and Planetary Sciences020701 environmental engineeringDigital elevation modelScale (map)Image resolutionGeology0105 earth and related environmental sciencesRemote sensing
researchProduct

Hyperspectral dimensionality reduction for biophysical variable statistical retrieval

2017

Abstract Current and upcoming airborne and spaceborne imaging spectrometers lead to vast hyperspectral data streams. This scenario calls for automated and optimized spectral dimensionality reduction techniques to enable fast and efficient hyperspectral data processing, such as inferring vegetation properties. In preparation of next generation biophysical variable retrieval methods applicable to hyperspectral data, we present the evaluation of 11 dimensionality reduction (DR) methods in combination with advanced machine learning regression algorithms (MLRAs) for statistical variable retrieval. Two unique hyperspectral datasets were analyzed on the predictive power of DR + MLRA methods to ret…

010504 meteorology & atmospheric sciencesMean squared errorComputer science0211 other engineering and technologies02 engineering and technologycomputer.software_genre01 natural sciencessymbols.namesakeLinear regressionComputers in Earth SciencesEngineering (miscellaneous)Gaussian processHyMap021101 geological & geomatics engineering0105 earth and related environmental sciencesData stream miningbusiness.industryDimensionality reductionHyperspectral imagingPattern recognitionAtomic and Molecular Physics and OpticsComputer Science ApplicationsKernel (statistics)symbolsData miningArtificial intelligencebusinesscomputerISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring

2020

Image processing entered the era of artificial intelligence, and machine learning algorithms emerged as attractive alternatives for time series data processing. Satellite image time series processing enables crop phenology monitoring, such as the calculation of start and end of season. Among the promising algorithms, Gaussian process regression (GPR) proved to be a competitive time series gap-filling algorithm with the advantage of, as developed within a Bayesian framework, providing associated uncertainty estimates. Nevertheless, the processing of time series images becomes computationally inefficient in its standard per-pixel usage, mainly for GPR training rather than the fitting step. To…

010504 meteorology & atmospheric sciencesMean squared errorComputer science0211 other engineering and technologiesImage processing02 engineering and technologycomputer.software_genre01 natural scienceslcsh:AgricultureKrigingTime series021101 geological & geomatics engineering0105 earth and related environmental sciences2. Zero hungerHyperparameterPixelSeries (mathematics)lcsh:SGaussian processes regressionSatellite Image Time SeriesData miningtime seriesSentinel-2optimizationAgronomy and Crop Sciencecomputercrop monitoringphenology indicatorsAgronomy
researchProduct

Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow.

2021

In support of cropland monitoring, operational Copernicus Sentinel-2 (S2) data became available globally and can be explored for the retrieval of important crop traits. Based on a hybrid workflow, retrieval models for six essential biochemical and biophysical crop traits were developed for both S2 bottom-of-atmosphere (BOA) L2A and S2 top-of-atmosphere (TOA) L1C data. A variational heteroscedastic Gaussian process regression (VHGPR) algorithm was trained with simulations generated by the combined leaf-canopy reflectance model PROSAILat the BOA scale and further combined with the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV) atmosphere model at the TOA scale. Establishe…

010504 meteorology & atmospheric sciencesMean squared errorScienceReference data (financial markets)MathematicsofComputing_GENERAL0211 other engineering and technologieshybrid model02 engineering and technologyAtmospheric model01 natural sciencessymbols.namesaketop-of-atmosphere reflectanceKrigingLeaf area indexGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsRemote sensing2. Zero hungerQbiophysical and biochemical traits; top-of-atmosphere reflectance; Sentinel-2; variational heteroscedastic Gaussian process regression; hybrid modelvariational heteroscedastic Gaussian process regressionVegetation15. Life on landsymbolsGeneral Earth and Planetary Sciencesbiophysical and biochemical traitsSentinel-2Scale (map)Remote sensing
researchProduct

Exploitation of SAR and Optical Sentinel Data to Detect Rice Crop and Estimate Seasonal Dynamics of Leaf Area Index

2017

This paper presents and evaluates multitemporal LAI estimates derived from Sentinel-2A data on rice cultivated area identified using time series of Sentinel-1A images over the main European rice districts for the 2016 crop season. This study combines the information conveyed by Sentinel-1A and Sentinel-2A into a high-resolution LAI retrieval chain. Rice crop was detected using an operational multi-temporal rule-based algorithm, and LAI estimates were obtained by inverting the PROSAIL radiative transfer model with Gaussian process regression. Direct validation was performed with in situ LAI measurements acquired in coordinated field campaigns in three countries (Italy, Spain and Greece). Res…

010504 meteorology & atmospheric sciencesMean squared errorScienceleaf area index (LAI)0211 other engineering and technologies02 engineering and technology01 natural sciencesCropAtmospheric radiative transfer codesConsistency (statistics)KrigingSpatial consistencyArròs Malalties i plaguesSentinel-1ALeaf area indexmappingSentinel021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing2. Zero hungerLeaf Area IndexSentinel-2AQCiències de la terrarice mapGeneral Earth and Planetary SciencesEnvironmental sciencerice map; leaf area index (LAI); Sentinel-1A; Sentinel-2A; Gaussian process regressionRice cropGaussian process regressionRemote Sensing
researchProduct