Search results for "regular language"

showing 10 items of 54 documents

Sur les Codes ZigZag et Leur Décidabilité

1990

AbstractThis paper deals with zigzag factorizations and zigzag codes. The language of “zigzag” over a regular language is represented by constructing a special family of two-way automata. Decidability of zigzag codes, previously shown for the finite languages, is proved here for all regular languages by the analysis of the set of “crossing sequences” produced by a two-way automation in the family. We also obtain that it is decidable whether or not a two-way automation of a certain type is non-ambiguous.RésuméDans ce papier on reprend les notions de factorisation zigzag et de code zigzag. On construit pour tout langage rationnel, une famille d'automates bilatéres lesquels reconnaissent les m…

Philosophy of languageCombinatoricsSet (abstract data type)Discrete mathematicsGeneral Computer ScienceRegular languageZigzagType (model theory)Computer Science(all)Theoretical Computer ScienceMathematicsDecidabilityAutomaton
researchProduct

On the Class of Languages Recognizable by 1-Way Quantum Finite Automata

2007

It is an open problem to characterize the class of languages recognized by quantum finite automata (QFA). We examine some necessary and some sufficient conditions for a (regular) language to be recognizable by a QFA. For a subclass of regular languages we get a condition which is necessary and sufficient. Also, we prove that the class of languages recognizable by a QFA is not closed under union or any other binary Boolean operation where both arguments are significant.

Discrete mathematicsNested wordComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)0102 computer and information sciences02 engineering and technologyComputer Science::Computational Complexityω-automaton01 natural sciencesDeterministic pushdown automatonDeterministic finite automatonRegular language010201 computation theory & mathematicsProbabilistic automaton0202 electrical engineering electronic engineering information engineeringComputer Science::Programming LanguagesQuantum finite automata020201 artificial intelligence & image processingNondeterministic finite automatonComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

CODING PARTITIONS OF REGULAR SETS

2009

A coding partition of a set of words partitions this set into classes such that whenever a sequence, of minimal length, has two distinct factorizations, the words of these factorizations belong to the same class. The canonical coding partition is the finest coding partition that partitions the set of words in at most one unambiguous class and other classes that localize the ambiguities in the factorizations of finite sequences. We prove that the canonical coding partition of a regular set contains a finite number of regular classes and we give an algorithm for computing this partition. From this we derive a canonical decomposition of a regular monoid into a free product of finitely many re…

MonoidGeneral Mathematicsregular monoid0102 computer and information sciences02 engineering and technologyregular language01 natural sciences[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL]CombinatoricsRegular language0202 electrical engineering electronic engineering information engineeringPartition (number theory)Finite setComputingMilieux_MISCELLANEOUSMathematicsDiscrete mathematics020206 networking & telecommunicationsPartition of a set16. Peace & justiceFree product010201 computation theory & mathematicscodeuniquely decipherable codecoding partitionRegular setsCoding (social sciences)International Journal of Algebra and Computation
researchProduct

Quantum Pushdown Automata

2000

Quantum finite automata, as well as quantum pushdown automata were first introduced by C. Moore, J. P. Crutchfield [13]. In this paper we introduce the notion of quantum pushdown automata (QPA) in a non-equivalent way, including unitarity criteria, by using the definition of quantum finite automata of [11]. It is established that the unitarity criteria of QPA are not equivalent to the corresponding unitarity criteria of quantum Turing machines [4]. We show that QPA can recognize every regular language. Finally we present some simple languages recognized by QPA, two of them are not recognizable by deterministic pushdown automata and one seems to be not recognizable by probabilistic pushdown …

Discrete mathematicsNested wordComputer scienceDeterministic context-free grammarContext-free languagePushdown automatonNonlinear Sciences::Cellular Automata and Lattice GasesEmbedded pushdown automatonDeterministic pushdown automatonTuring machinesymbols.namesakeRegular languageDeterministic automatonProbabilistic automatonsymbolsQuantum finite automataAutomata theoryComputer Science::Formal Languages and Automata TheoryQuantum cellular automaton
researchProduct

Nonstochastic languages as projections of 2-tape quasideterministic languages

1998

A language L (n) of n-tuples of words which is recognized by a n-tape rational finite-probabilistic automaton with probability 1-e, for arbitrary e > 0, is called quasideterministic. It is proved in [Fr 81], that each rational stochastic language is a projection of a quasideterministic language L (n) of n-tuples of words. Had projections of quasideterministic languages on one tape always been rational stochastic languages, we would have a good characterization of the class of the rational stochastic languages. However we prove the opposite in this paper. A two-tape quasideterministic language exists, the projection of which on the first tape is a nonstochastic language.

AlgebraClass (set theory)TheoryofComputation_COMPUTATIONBYABSTRACTDEVICESFinite-state machineRegular languageProjection (mathematics)Deterministic automatonComputer scienceProbabilistic automatonCharacterization (mathematics)AlgorithmAutomaton
researchProduct

Capabilities of Ultrametric Automata with One, Two, and Three States

2016

Ultrametric automata use p-adic numbers to describe the random branching of the process of computation. Previous research has shown that ultrametric automata can have a significant decrease in computing complexity. In this paper we consider the languages that can be recognized by one-way ultrametric automata with one, two, and three states. We also show an example of a promise problem that can be solved by ultrametric integral automaton with three states.

Discrete mathematicsBinary treeComputationPrime number020206 networking & telecommunications02 engineering and technologyNonlinear Sciences::Cellular Automata and Lattice GasesCondensed Matter::Disordered Systems and Neural NetworksAutomatonTuring machinesymbols.namesakeRegular language0202 electrical engineering electronic engineering information engineeringsymbolsMathematics::Metric Geometry020201 artificial intelligence & image processingPromise problemUltrametric spaceComputer Science::DatabasesComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

Quantum Finite Multitape Automata

1999

Quantum finite automata were introduced by C. Moore, J. P. Crutchfield [4], and by A. Kondacs and J. Watrous [3]. This notion is not a generalization of the deterministic finite automata. Moreover, in [3] it was proved that not all regular languages can be recognized by quantum finite automata. A. Ambainis and R. Freivalds [1] proved that for some languages quantum finite automata may be exponentially more concise rather than both deterministic and probabilistic finite automata. In this paper we introduce the notion of quantum finite multitape automata and prove that there is a language recognized by a quantum finite automaton but not by deterministic or probabilistic finite automata. This …

Discrete mathematicsProbabilistic finite automataFinite-state machineNested wordComputer scienceDeterministic context-free grammarTimed automatonω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesAutomatonMobile automatonNondeterministic finite automaton with ε-movesDeterministic finite automatonDFA minimizationRegular languageDeterministic automatonProbabilistic automatonContinuous spatial automatonAutomata theoryQuantum finite automataTwo-way deterministic finite automatonNondeterministic finite automatonComputer Science::Formal Languages and Automata TheoryQuantum cellular automaton
researchProduct

Quantum Computers and Quantum Automata

2000

Quantum computation is a most challenging project involving research both by physicists and computer scientists. The principles of quantum computation differ from the principles of classical computation very much. When quantum computers become available, the public-key cryptography will change radically. It is no exaggeration to assert that building a quantum computer means building a universal code-breaking machine. Quantum finite automata are expected to appear much sooner. They do not generalize deterministic finite automata. Their capabilities are incomparable.

Theoretical computer scienceFinite-state machinebusiness.industryComputationTheoryofComputation_GENERALCryptographyQuantum circuitDeterministic finite automatonRegular languageComputerSystemsOrganization_MISCELLANEOUSQuantum finite automatabusinessMathematicsQuantum computer
researchProduct

Efficient algorithm for learning simple regular expressions from noisy examples

1994

We present an efficient algorithm for finding approximate repetitions in a given sequence of characters. First, we define a class of simple regular expressions which are of star-height one and do not contain union operations, and a stochastic mutation process of a given length over a string of characters. Then, assuming that a given string of characters is obtained corrupted by the defined mutation process from some long enough word generated by a simple regular expression, we try to restore the expression. We prove that to within some reasonable accuracy it is always possible if the length of the mutation process is bounded comparing to the length of the example. We provide an algorithm by…

Discrete mathematicsRegular languageComputer scienceBounded functionString (computer science)Mutation (genetic algorithm)Edit distanceRegular expressionExpression (computer science)Time complexity
researchProduct

Some applications of a theorem of Shirshov to language theory

1983

Some applications of a theorem of Shirshov to language theory are given: characterization of regular languages, characterization of bounded languages, and a sufficient condition for a language to be Parikh-bounded.

business.industryGeneral EngineeringComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Characterization (mathematics)computer.software_genrePhilosophy of languageAlgebraTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESRegular languageBounded functionComputer Science::Programming LanguagesArtificial intelligencebusinesscomputerNatural language processingEngineering(all)MathematicsInformation and Control
researchProduct