6533b854fe1ef96bd12af30f

RESEARCH PRODUCT

Quantum Finite Multitape Automata

Marats GolovkinsAndris AmbainisRichard F. BonnerMarek KarpinskiRusins Freivalds

subject

Discrete mathematicsProbabilistic finite automataFinite-state machineNested wordComputer scienceDeterministic context-free grammarTimed automatonω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesAutomatonMobile automatonNondeterministic finite automaton with ε-movesDeterministic finite automatonDFA minimizationRegular languageDeterministic automatonProbabilistic automatonContinuous spatial automatonAutomata theoryQuantum finite automataTwo-way deterministic finite automatonNondeterministic finite automatonComputer Science::Formal Languages and Automata TheoryQuantum cellular automaton

description

Quantum finite automata were introduced by C. Moore, J. P. Crutchfield [4], and by A. Kondacs and J. Watrous [3]. This notion is not a generalization of the deterministic finite automata. Moreover, in [3] it was proved that not all regular languages can be recognized by quantum finite automata. A. Ambainis and R. Freivalds [1] proved that for some languages quantum finite automata may be exponentially more concise rather than both deterministic and probabilistic finite automata. In this paper we introduce the notion of quantum finite multitape automata and prove that there is a language recognized by a quantum finite automaton but not by deterministic or probabilistic finite automata. This is the first result on a problem which can be solved by a quantum computer but not by a deterministic or probabilistic computer. Additionally we discover unexpected probabilistic automata recognizing complicated languages.

https://doi.org/10.1007/3-540-47849-3_21