0000000000033914

AUTHOR

Richard F. Bonner

showing 6 related works from this author

Ambainis-Freivalds’ Algorithm for Measure-Once Automata

2001

An algorithm given by Ambainis and Freivalds [1] constructs a quantum finite automaton (QFA) with O(log p) states recognizing the language Lp = {ai| i is divisible by p} with probability 1 - Ɛ , for any Ɛ > 0 and arbitrary prime p. In [4] we gave examples showing that the algorithm is applicable also to quantum automata of very limited size. However, the Ambainis-Freivalds algoritm is tailored to constructing a measure-many QFA (defined by Kondacs andWatrous [2]), which cannot be implemented on existing quantum computers. In this paper we modify the algorithm to construct a measure-once QFA of Moore and Crutchfield [3] and give examples of parameters for this automaton. We show for the lang…

CombinatoricsDiscrete mathematicsFinite-state machineQuantum finite automataSpace (mathematics)QuantumMeasure (mathematics)AlgorithmPrime (order theory)AutomatonMathematicsQuantum computer
researchProduct

Probabilities to Accept Languages by Quantum Finite Automata

1999

We construct a hierarchy of regular languages such that the current language in the hierarchy can be accepted by 1-way quantum finite automata with a probability smaller than the corresponding probability for the preceding language in the hierarchy. These probabilities converge to 1/2.

Discrete mathematicsTheoretical computer scienceNested wordFinite-state machineHierarchy (mathematics)Computer scienceComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Turing machinesymbols.namesakeNonlinear Sciences::Exactly Solvable and Integrable SystemsRegular languageProbabilistic automatonAnalytical hierarchysymbolsComputer Science::Programming LanguagesQuantum finite automataQuantum algorithmNondeterministic finite automaton
researchProduct

Quantum inductive inference by finite automata

2008

AbstractFreivalds and Smith [R. Freivalds, C.H. Smith Memory limited inductive inference machines, Springer Lecture Notes in Computer Science 621 (1992) 19–29] proved that probabilistic limited memory inductive inference machines can learn with probability 1 certain classes of total recursive functions, which cannot be learned by deterministic limited memory inductive inference machines. We introduce quantum limited memory inductive inference machines as quantum finite automata acting as inductive inference machines. These machines, we show, can learn classes of total recursive functions not learnable by any deterministic, nor even by probabilistic, limited memory inductive inference machin…

Finite-state machineGeneral Computer Sciencebusiness.industryProbabilistic logicInductive inferenceInductive reasoningAutomataTheoretical Computer ScienceAutomatonTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESQuantum computationLearningQuantum finite automataProbability distributionArtificial intelligencebusinessQuantumComputer Science(all)Quantum computerMathematicsTheoretical Computer Science
researchProduct

Nonstochastic languages as projections of 2-tape quasideterministic languages

1998

A language L (n) of n-tuples of words which is recognized by a n-tape rational finite-probabilistic automaton with probability 1-e, for arbitrary e > 0, is called quasideterministic. It is proved in [Fr 81], that each rational stochastic language is a projection of a quasideterministic language L (n) of n-tuples of words. Had projections of quasideterministic languages on one tape always been rational stochastic languages, we would have a good characterization of the class of the rational stochastic languages. However we prove the opposite in this paper. A two-tape quasideterministic language exists, the projection of which on the first tape is a nonstochastic language.

AlgebraClass (set theory)TheoryofComputation_COMPUTATIONBYABSTRACTDEVICESFinite-state machineRegular languageProjection (mathematics)Deterministic automatonComputer scienceProbabilistic automatonCharacterization (mathematics)AlgorithmAutomaton
researchProduct

Quantum Finite Multitape Automata

1999

Quantum finite automata were introduced by C. Moore, J. P. Crutchfield [4], and by A. Kondacs and J. Watrous [3]. This notion is not a generalization of the deterministic finite automata. Moreover, in [3] it was proved that not all regular languages can be recognized by quantum finite automata. A. Ambainis and R. Freivalds [1] proved that for some languages quantum finite automata may be exponentially more concise rather than both deterministic and probabilistic finite automata. In this paper we introduce the notion of quantum finite multitape automata and prove that there is a language recognized by a quantum finite automaton but not by deterministic or probabilistic finite automata. This …

Discrete mathematicsProbabilistic finite automataFinite-state machineNested wordComputer scienceDeterministic context-free grammarTimed automatonω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesAutomatonMobile automatonNondeterministic finite automaton with ε-movesDeterministic finite automatonDFA minimizationRegular languageDeterministic automatonProbabilistic automatonContinuous spatial automatonAutomata theoryQuantum finite automataTwo-way deterministic finite automatonNondeterministic finite automatonComputer Science::Formal Languages and Automata TheoryQuantum cellular automaton
researchProduct

Quantum versus Probabilistic One-Way Finite Automata with Counter

2001

The paper adds the one-counter one-way finite automaton [6] to the list of classical computing devices having quantum counterparts more powerful in some cases. Specifically, two languages are considered, the first is not recognizable by deterministic one-counter one-way finite automata, the second is not recognizable with bounded error by probabilistic one-counter one-way finite automata, but each recognizable with bounded error by a quantum one-counter one-way finite automaton. This result contrasts the case of one-way finite automata without counter, where it is known [5] that the quantum device is actually less powerful than its classical counterpart.

TheoryofComputation_COMPUTATIONBYABSTRACTDEVICESNested wordComputer scienceTimed automatonBüchi automatonω-automatonNondeterministic finite automaton with ε-movesTuring machinesymbols.namesakeDFA minimizationDeterministic automatonContinuous spatial automatonQuantum finite automataDeterministic system (philosophy)Two-way deterministic finite automatonNondeterministic finite automatonDiscrete mathematicsFinite-state machineQuantum dot cellular automatonNonlinear Sciences::Cellular Automata and Lattice GasesMobile automatonTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDeterministic finite automatonProbabilistic automatonsymbolsAutomata theoryComputer Science::Formal Languages and Automata TheoryQuantum cellular automaton
researchProduct